A278291 Numbers n such that n-1 has the same number of prime factors as n (with multiplicity).
3, 10, 15, 22, 26, 28, 34, 35, 39, 45, 58, 76, 86, 87, 94, 95, 99, 117, 119, 122, 123, 125, 134, 136, 142, 143, 146, 148, 154, 159, 165, 171, 172, 175, 178, 202, 203, 206, 214, 215, 218, 219, 231, 245, 246, 254, 285, 286, 297, 299, 302, 303, 327, 333, 335, 351, 357, 362, 370, 376, 382, 388, 394, 395
Offset: 1
Keywords
Examples
a(1)=3, as both 2 and 3 have 1 prime factor. a(2)=10, as both 9 and 10 have 2 prime factors. a(3)=15, as both 14 and 15 have 2 prime factors.
Links
- Ely Golden, Table of n, a(n) for n = 1..10000
Programs
-
Java
public class A278291{ public static void main(String[] args)throws Exception{ long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user long dim1; long counter=3; long index=1; while(index<=10000){ dim1=numberOfPrimeFactors(counter); if(dim1==dim0){System.out.println(index+" "+counter);index++;} dim0=dim1; counter++; } } }
-
Mathematica
fQ[n_] := PrimeOmega[n - 1] == PrimeOmega[n]; Select[Range@400, fQ] (* Robert G. Wilson v, Nov 17 2016 *)
-
PARI
is(n) = bigomega(n)==bigomega(n-1) \\ Felix Fröhlich, Nov 17 2016
-
SageMath
def bigomega(x): s=0; f=list(factor(x)); for c in range(len(f)): s+=f[c][1] return s; dim0=bigomega(2); counter=3 index=1 while(index<=10000): dim1=bigomega(counter); if(dim1==dim0): print(str(index)+" "+str(counter)) index+=1; dim0=dim1; counter+=1;
Formula
a(n) = A045920(n) + 1. - Robert G. Wilson v, Nov 17 2016