cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A278293 a(n) is the number of prime factors of A278291(n) (with multiplicity).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 4, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 3, 2
Offset: 1

Views

Author

Ely Golden, Nov 16 2016

Keywords

Comments

a(n) is also the number of prime factors in A045920(n), by definition.
Empirically, it seems as though there are relatively fewer instances of a(n)=x as x tends toward positive infinity (with the exception of a(n)=1, of which there is exactly one instance due to 2 and 3 being the only consecutive primes). For example, in the first 10000 terms, 2391 are 2, 5046 are 3, 2126 are 4, 381 are 5, 51 are 6, 3 are 7, and only one is 8, with no terms in the first 10000 greater than 8.

Examples

			a(2)=2, as A278291(2)=10, which has 2 prime factors.
a(6)=3, as A278291(6)=28, which has 3 prime factors.
		

Crossrefs

Cf. A045920(n).

Programs

  • Java
    public class A278293{
    public static void main(String[] args)throws Exception{
        long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user
        long dim1;
        long counter=3;
        long index=1;
        while(index<=10000){
          dim1=numberOfPrimeFactors(counter);
          if(dim1==dim0){System.out.println(index+" "+dim1);index++;}
          dim0=dim1;
          counter++;
        }
      }
    }
    
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    counter=3
    index=1
    while(index<=10000):
        dim1=bigomega(counter);
        if(dim1==dim0):
            print(str(index)+" "+str(dim1))
            index+=1;
        dim0=dim1;
        counter+=1;

Formula

a(n) = A001222(A278291(n)) = A001222(A045920(n))

A278294 a(n) = first term in A278291 with n prime factors.

Original entry on oeis.org

3, 10, 28, 136, 945, 5265, 29889, 50625, 203392, 3290625, 6082048, 32536000, 326481921, 3274208001, 6929459200, 72523096065, 37694578689, 471672487936, 11557226700801, 54386217385984, 50624737509376, 275892612890625, 4870020829413376, 68091093855502336, 2280241934368768
Offset: 1

Views

Author

Ely Golden, Nov 16 2016

Keywords

Comments

a(n)-1 is the first term in A115186 with n prime factors, by definition.
If f(n) is the index of the first occurrence of n in A278293, a(n)=A278291(f(n)), by definition.

Examples

			a(2)=10, as it is the first term of A278291 with 2 prime factors.
a(3)=28, as it is the first term of A278291 with 3 prime factors.
		

Crossrefs

Cf. A115186.

Programs

  • Java
    import java.math.BigInteger;
    public class A278294{
    public static void main(String[] args)throws Exception{
        BigInteger dim0=numberOfPrimeFactors(BigInteger.valueOf(2));//note that this method must be manually implemented by the user
        BigInteger dim1;
        BigInteger maxdim=BigInteger.ONE;
        BigInteger counter=BigInteger.valueOf(3);
        long index=1;
        while(index<=20){
          dim1=numberOfPrimeFactors(counter);
          if(dim1.equals(dim0)&&maxdim.testBit(dim1.intValue())==false){System.out.println(dim1+" "+counter);maxdim=maxdim.setBit(dim1.intValue());index++;}
          dim0=dim1;
          counter=counter.add(BigInteger.ONE);
        }
      }
    }
    
  • Mathematica
    Function[w, Flatten@ Map[w[[#]] &, #] &@ Map[First, DeleteCases[#, w_ /; Length@ w == 0]] &@ Map[Position[w, k_ /; PrimeOmega@k == #] &, Range@ 9]]@ Select[Range[10^6], Equal @@ Map[PrimeOmega, {# - 1, #}] &] (* Michael De Vlieger, Dec 01 2016 *)
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    maxdim=1
    counter=3
    index=1
    while(index<=20):
        dim1=bigomega(counter);
        if((dim1==dim0)&((maxdim&(1<
    				

A045920 Numbers m such that the factorizations of m..m+1 have the same number of primes (including multiplicities).

Original entry on oeis.org

2, 9, 14, 21, 25, 27, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 121, 122, 124, 133, 135, 141, 142, 145, 147, 153, 158, 164, 170, 171, 174, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 245, 253, 284, 285, 296, 298, 301, 302, 326, 332, 334, 350, 356, 361
Offset: 1

Views

Author

Keywords

Comments

A115186 is a subsequence: A001222(A115186(n)) = A001222(A115186(n)+1) = n. - Reinhard Zumkeller, Jan 16 2006
Indices k such that A076191(k) = 0. - Ray Chandler, Dec 10 2008
A045939 is a subsequence. - Zak Seidov, Jul 02 2020
This sequence is infinite (Heath-Brown, 1984). - Amiram Eldar, Jul 11 2020

References

  • C. Clawson, Mathematical mysteries, Plenum Press 1996, p. 250.

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): this sequence (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • Haskell
    import Data.List (elemIndices)
    a045920 n = a045920_list !! (n-1)
    a045920_list = map (+ 1) $ elemIndices 0 a076191_list
    -- Reinhard Zumkeller, Mar 23 2012, Oct 11 2011
    
  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};Do[If[f[n]==f[n+1],AppendTo[lst,n]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    Transpose[Transpose[Select[Partition[Table[{n,PrimeOmega[n]},{n,400}], 2,1], #[[1,2]]==#[[2,2]]&]][[1]]][[1]] (* Harvey P. Dale, Feb 21 2012 *)
    Position[Differences[PrimeOmega[Range[400]]], 0] // Flatten (* Zak Seidov, Oct 30 2012 *)
  • PARI
    is(n)=bigomega(n)==bigomega(n+1) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A278291(n) - 1. - Zak Seidov, Nov 17 2018

Extensions

More terms from David W. Wilson

A278311 Numbers n such that n-1 and n+1 have the same number of prime factors as n (with multiplicity).

Original entry on oeis.org

34, 86, 94, 122, 142, 171, 202, 214, 218, 245, 285, 302, 394, 429, 435, 446, 507, 603, 604, 605, 634, 638, 698, 842, 922, 963, 1042, 1075, 1084, 1085, 1131, 1138, 1245, 1262, 1275, 1310, 1346, 1402, 1413, 1431, 1435, 1449, 1491, 1533, 1557, 1587, 1605, 1635, 1642, 1676, 1762, 1772, 1838, 1886, 1894, 1925, 1942
Offset: 1

Views

Author

Ely Golden, Nov 17 2016

Keywords

Examples

			a(1) = 34, as 33, 34, and 35 all have 2 prime factors.
a(2) = 86, as 85, 86, and 87 all have 2 prime factors.
		

Crossrefs

Intersection of A045920 and A278291.
a(n) = A045939(n) + 1.

Programs

  • Java
    public class A278311{
    public static void main(String[] args)throws Exception{
        long dim0=numberOfPrimeFactors(2);//note that this method must be manually implemented by the user
        long dim1=numberOfPrimeFactors(3);
        long dim2;
        long counter=4;
        long index=1;
        while(index<=10000){
          dim2=numberOfPrimeFactors(counter);
          if(dim2==dim1&&dim1==dim0){System.out.println(index+" "+(counter-1));index++;}
          dim0=dim1;
          dim1=dim2;
          counter++;
        }
      }
    }
    
  • PARI
    isok(n) = (bigomega(n-1) == bigomega(n)) && (bigomega(n) == bigomega(n+1)); \\ Michel Marcus, Nov 17 2016
  • SageMath
    def bigomega(x):
        s=0;
        f=list(factor(x));
        for c in range(len(f)):
            s+=f[c][1]
        return s;
    dim0=bigomega(2);
    dim1=bigomega(3);
    counter=4
    index=1
    while(index<=10000):
        dim2=bigomega(counter);
        if(dim2==dim1&dim1==dim0):
            print(str(index)+" "+str(counter-1))
            index+=1;
        dim0=dim1;
        dim1=dim2;
        counter+=1;
    
Showing 1-4 of 4 results.