cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A045939 Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).

Original entry on oeis.org

33, 85, 93, 121, 141, 170, 201, 213, 217, 244, 284, 301, 393, 428, 434, 445, 506, 602, 603, 604, 633, 637, 697, 841, 921, 962, 1041, 1074, 1083, 1084, 1130, 1137, 1244, 1261, 1274, 1309, 1345, 1401, 1412, 1430, 1434, 1448, 1490, 1532, 1556, 1586, 1604
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
A056809 is a subsequence.
Cf. A006073. - Harvey P. Dale, Apr 19 2011

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2],AppendTo[lst,n]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700],pd2Q]  (* Harvey P. Dale, Apr 19 2011 *)
    SequencePosition[PrimeOmega[Range[1700]],{x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    list(lim)=my(v=List(),a=1,b=1,c); forfactored(n=4,lim\1+2,c=bigomega(n); if(a==b&&a==c, listput(v,n[1]-2)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, May 07 2020

A045940 Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).

Original entry on oeis.org

602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4023, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7314, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9162
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), this sequence (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Cf. A045932 (similar, with omega).

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3],AppendTo[lst,n]],{n,0,8!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    SequencePosition[PrimeOmega[Range[10000]],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 02 2020 *)
  • PARI
    isok(n) = (bigomega(n) == bigomega(n+1)) && (bigomega(n+1) == bigomega(n+2)) && (bigomega(n+2) == bigomega(n+3)); \\ Michel Marcus, Jan 06 2015

A045941 Numbers m such that the factorizations of m..m+4 have the same number of primes (including multiplicities).

Original entry on oeis.org

602, 2522, 2523, 4202, 4921, 4922, 5034, 5282, 7730, 12122, 18241, 18242, 18571, 19129, 21931, 23161, 23305, 25203, 25553, 25554, 27290, 27291, 29233, 30354, 30793, 32035, 33843, 34561, 35124, 35714, 36001, 36835, 40313, 40314, 40394, 42182, 45265, 52854
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), this sequence (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

A045942 Numbers m such that the factorizations of m..m+5 have the same number of primes (including multiplicities).

Original entry on oeis.org

2522, 4921, 18241, 25553, 27290, 40313, 90834, 95513, 98282, 98705, 117002, 120962, 136073, 136865, 148682, 153794, 181441, 181554, 185825, 204323, 211673, 211674, 212401, 215034, 216361, 231002, 231665, 234641, 236041, 236634, 266282, 281402, 284344, 285410
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), this sequence (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3]==f[n+4]==f[n+5],AppendTo[lst,n]],{n,0,10!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    SequencePosition[PrimeOmega[Range[300000]],{x_,x_,x_,x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Aug 29 2025 *)

A115186 Smallest number m such that m and m+1 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 9, 27, 135, 944, 5264, 29888, 50624, 203391, 3290624, 6082047, 32535999, 326481920, 3274208000, 6929459199, 72523096064, 37694578688, 471672487935, 11557226700800, 54386217385983, 50624737509375, 275892612890624, 4870020829413375, 68091093855502335, 2280241934368767, 809386931759611904, 519017301463269375
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 16 2006

Keywords

Comments

A001222(a(n)) = A001222(a(n)+1) = n: subsequence of A045920.
a(16) > 4*10^10. - Martin Fuller, Jan 17 2006
a(n) <= A093548(n) <= A052215(n). - Zak Seidov, Jan 16 2015
Apparently, 4*a(n)+2 is the least number k such that k-2 and k+2 have exactly n+2 prime factors, counted with multiplicity. - Hugo Pfoertner, Apr 02 2024

Examples

			a(10) = 3290624 = 6427 * 2^9, 3290624+1 = 13 * 5^5 * 3^4:
A001222(3290624) = A001222(3290625) = 10.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 135, p. 46, Ellipses, Paris 2008.

Crossrefs

Equivalent sequences for longer runs: A113752 (3), A356893 (4).

Programs

  • Maple
    f:= proc(n) uses priqueue; local t,x,p,i;
        initialize(pq);
        insert([-3^n, 3$n], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if numtheory:-bigomega(x-1)=n then return x-1
          elif numtheory:-bigomega(x+1)=n then return x
          fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
          od;
        od
    end proc:
    seq(f(i),i=1..27); # Robert Israel, Sep 30 2024

Extensions

a(13)-a(15) from Martin Fuller, Jan 17 2006
a(16)-a(17) from Donovan Johnson, Apr 08 2008
a(18)-a(22) from Donovan Johnson, Jan 21 2009
a(23)-a(25) from Donovan Johnson, May 25 2013
a(26)-a(27) from Robert Israel, Sep 30 2024

A058933 Let k be bigomega(n) (i.e., n is a k-almost-prime). a(n) = number of k-almost-primes <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 4, 5, 2, 6, 5, 6, 1, 7, 3, 8, 4, 7, 8, 9, 2, 9, 10, 5, 6, 10, 7, 11, 1, 11, 12, 13, 3, 12, 14, 15, 4, 13, 8, 14, 9, 10, 16, 15, 2, 17, 11, 18, 12, 16, 5, 19, 6, 20, 21, 17, 7, 18, 22, 13, 1, 23, 14, 19, 15, 24, 16, 20, 3, 21, 25, 17, 18, 26, 19, 22, 4, 8, 27, 23
Offset: 1

Views

Author

Naohiro Nomoto, Jan 11 2001

Keywords

Comments

Equivalently, the number of positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity. - Gus Wiseman, Dec 28 2018
There is a close relationship between a(n) and a(n^2). See A209934 for an exploratory quantification. - Peter Munn, Aug 04 2019

Examples

			3 is prime, so a(3)=2. 10 is 2-almost prime (semiprime), so a(10)=4.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2     3  4  5     6  9   7   8   11  10  14      13  12  17  18
              2     3     4  6   5       7   9   10      11  8   13  12
                    2        4   3       5   6   9       7       11  8
                                 2       3   4   6       5       7
                                         2       4       3       5
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Positions of 1's are A000079.
Equivalent sequence restricted to squarefree numbers: A340313.

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= numtheory[bigomega](n);
          p(t):= p(t)+1
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    p[] = 0; a[n] := a[n] = Module[{t}, t = PrimeOmega[n]; p[t] = p[t]+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)
  • PARI
    a(n) = my(k=bigomega(n)); sum(i=1, n, bigomega(i)==k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import prod, isqrt
    from sympy import isprime, primepi, primerange, integer_nthroot, primeomega
    def A058933(n):
        if n==1: return 1
        if isprime(n): return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))) # Chai Wah Wu, Aug 28 2024

Formula

Ordinal transform of A001222 (bigomega). - Franklin T. Adams-Watters, Aug 28 2006
If a(n) < a(3^A001222(2n)) = A078843(A001222(2n)) then a(2n) = a(n), otherwise a(2n) > a(n). - Peter Munn, Aug 05 2019

Extensions

Name edited by Peter Munn, Dec 30 2022

A123103 Numbers m such that the factorizations of m..m+6 have the same number of primes (including multiplicities).

Original entry on oeis.org

211673, 298433, 355923, 381353, 460801, 506521, 540292, 568729, 690593, 705953, 737633, 741305, 921529, 1056529, 1088521, 1105553, 1141985, 1187121, 1362313, 1721522, 1811704, 1828070, 2016721, 2270633, 2369809, 2535721, 2590985
Offset: 1

Views

Author

Zak Seidov, Nov 05 2006

Keywords

Comments

Subset of A045940, Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).

Examples

			211673 = 7*11*2749, 211674 = 2*3*35279, 211675 = 5^2*8467, 211676 = 2^2*52919, 211677 = 3*37*1907, 211678 = 2*109*971, 211679 = 13*19*857 are all triprimes.
355923 = 3^2*71*557, 355924 = 2^2*101*881, 355925 = 5^2*23*619, 355926 = 2*3*137*433, 355927 = 11*13*19*131, 355928 = 2^3*44491, 355929 = 3*7*17*997 are all products of 4 primes (typo corrected _Zak Seidov_, Oct 24 2022).
		

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), this sequence (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    c=0; p1=0; for(n=2, 10^8, p2=bigomega(n); if(p1==p2, c++; if(c>=6, print1(n-6 ",")), c=0; p1=p2)) /* Donovan Johnson, Mar 20 2013 */

Extensions

a(14)-a(27) from Donovan Johnson, Mar 26 2010

A123201 Numbers m such that the factorizations of m..m+7 have the same number of primes (including multiplicities).

Original entry on oeis.org

3405122, 3405123, 6612470, 8360103, 8520321, 9306710, 10762407, 12788342, 12788343, 15212151, 15531110, 16890901, 17521382, 17521383, 21991382, 21991383, 22715270, 22715271, 22841702, 22841703, 22914722, 22914723
Offset: 1

Views

Author

Zak Seidov, Nov 05 2006

Keywords

Comments

Note that because 3405130 = 2*5*167*2039 is also the product of 4 primes, 3405122 is the first m such that numbers m..m+8 are products of the same number k of primes (k=4).

Examples

			3405122 = 2*7*29*8387, 3405123 = 3^2*19*19913, 3405124 = 2^2*127*6703, 3405125 = 5^3*27241, 3405126 = 2*3*59*9619, 3405127 = 11*23*43*313, 3405128 = 2^3*425641, 3405129 = 3*7*13*12473 all products of 4 primes.
		

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), this sequence (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    c=0; p1=0; for(n=2, 10^8, p2=bigomega(n); if(p1==p2, c++; if(c>=7, print1(n-7 ",")), c=0; p1=p2)) \\ Donovan Johnson, Mar 20 2013

Extensions

a(7)-a(22) from Donovan Johnson, Apr 09 2010

A358017 Numbers m such that the factorizations of m..m+8 have the same number of primes (including multiplicities).

Original entry on oeis.org

3405122, 12788342, 17521382, 21991382, 22715270, 22841702, 22914722, 23553171, 27451669, 27793334, 49361762, 49799889, 49799890, 50727123, 51359029, 52154450, 53758502, 57379970, 60975410, 60975411, 75638644, 76502870, 76724630, 85432322
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), this sequence (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=3405122,lim\1+8, my(t=bigomega(n)); if(t==cur, if(ct++>7, listput(v,n[1]-8)), cur=t; ct=0)); Vec(v)

A358018 Numbers m such that the factorizations of m..m+9 have the same number of primes (including multiplicities).

Original entry on oeis.org

49799889, 60975410, 92017202, 202536181, 202536182, 249221990, 284007602, 314623105, 326857970, 331212422, 405263521, 421980949, 476360643, 506580949, 520309427, 532896662, 572636822, 666966962, 703401061, 749908502, 816533270
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), this sequence (k=9), A358019 (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=49799889,lim\1+9, my(t=bigomega(n)); if(t==cur, if(ct++>8, listput(v,n[1]-9)), cur=t; ct=0)); Vec(v)
Showing 1-10 of 39 results. Next