cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A045920 Numbers m such that the factorizations of m..m+1 have the same number of primes (including multiplicities).

Original entry on oeis.org

2, 9, 14, 21, 25, 27, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 121, 122, 124, 133, 135, 141, 142, 145, 147, 153, 158, 164, 170, 171, 174, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 245, 253, 284, 285, 296, 298, 301, 302, 326, 332, 334, 350, 356, 361
Offset: 1

Views

Author

Keywords

Comments

A115186 is a subsequence: A001222(A115186(n)) = A001222(A115186(n)+1) = n. - Reinhard Zumkeller, Jan 16 2006
Indices k such that A076191(k) = 0. - Ray Chandler, Dec 10 2008
A045939 is a subsequence. - Zak Seidov, Jul 02 2020
This sequence is infinite (Heath-Brown, 1984). - Amiram Eldar, Jul 11 2020

References

  • C. Clawson, Mathematical mysteries, Plenum Press 1996, p. 250.

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): this sequence (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • Haskell
    import Data.List (elemIndices)
    a045920 n = a045920_list !! (n-1)
    a045920_list = map (+ 1) $ elemIndices 0 a076191_list
    -- Reinhard Zumkeller, Mar 23 2012, Oct 11 2011
    
  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};Do[If[f[n]==f[n+1],AppendTo[lst,n]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    Transpose[Transpose[Select[Partition[Table[{n,PrimeOmega[n]},{n,400}], 2,1], #[[1,2]]==#[[2,2]]&]][[1]]][[1]] (* Harvey P. Dale, Feb 21 2012 *)
    Position[Differences[PrimeOmega[Range[400]]], 0] // Flatten (* Zak Seidov, Oct 30 2012 *)
  • PARI
    is(n)=bigomega(n)==bigomega(n+1) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A278291(n) - 1. - Zak Seidov, Nov 17 2018

Extensions

More terms from David W. Wilson

A056809 Numbers k such that k, k+1 and k+2 are products of two primes.

Original entry on oeis.org

33, 85, 93, 121, 141, 201, 213, 217, 301, 393, 445, 633, 697, 841, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 04 2002

Keywords

Comments

Each term is the beginning of a run of three 2-almost primes (semiprimes). No runs exist of length greater than three. For the same reason, each term must be odd: If k were even, then so would be k+2. In fact, one of k or k+2 would be divisible by 4, so must indeed be 4 to have only two prime factors. However, neither 2,3,4 nor 4,5,6 is such a run. - Rick L. Shepherd, May 27 2002
k+1, which is twice a prime, is in A086005. The primes are in A086006. - T. D. Noe, May 31 2006
The squarefree terms are listed in A039833. - Jianing Song, Nov 30 2021

Examples

			121 is in the sequence because 121 = 11^2, 122 = 2*61 and 123 = 3*41, each of which is the product of two primes.
		

Crossrefs

Intersection of A070552 and A092207.

Programs

  • Mathematica
    f[n_] := Plus @@ Transpose[ FactorInteger[n]] [[2]]; Select[Range[10^4], f[ # ] == f[ # + 1] == f[ # + 2] == 2 & ]
    Flatten[Position[Partition[PrimeOmega[Range[5000]],3,1],{2,2,2}]] (* Harvey P. Dale, Feb 15 2015 *)
    SequencePosition[PrimeOmega[Range[5000]],{2,2,2}][[;;,1]] (* Harvey P. Dale, Mar 03 2024 *)
  • PARI
    forstep(n=1,5000,2, if(bigomega(n)==2 && bigomega(n+1)==2 && bigomega(n+2)==2, print1(n,",")))
    
  • PARI
    is(n)=n%4==1 && isprime((n+1)/2) && bigomega(n)==2 && bigomega(n+2)==2 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    list(lim)=my(v=List(),t); forprime(p=2,(lim+1)\2, if(bigomega(t=2*p-1)==2 && bigomega(t+2)==2, listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 08 2015

Formula

a(n) = A086005(n) - 1 = 2*A086006(n) - 1 = 4*A123255(n) + 1. - Jianing Song, Nov 30 2021

Extensions

Edited and extended by Robert G. Wilson v, May 04 2002

A039833 Smallest of three consecutive squarefree numbers k, k+1, k+2 of the form p*q where p and q are distinct primes.

Original entry on oeis.org

33, 85, 93, 141, 201, 213, 217, 301, 393, 445, 633, 697, 921, 1041, 1137, 1261, 1345, 1401, 1641, 1761, 1837, 1893, 1941, 1981, 2101, 2181, 2217, 2305, 2361, 2433, 2461, 2517, 2641, 2721, 2733, 3097, 3385, 3601, 3693, 3865, 3901, 3957, 4285, 4413, 4533, 4593, 4881, 5601
Offset: 1

Views

Author

Keywords

Comments

Equivalently: k, k+1 and k+2 all have 4 divisors.
There cannot be four consecutive squarefree numbers as one of them is divisible by 2^2 = 4.
These 3 consecutive squarefree numbers of the form p*q have altogether 6 prime factors always including 2 and 3. E.g., if k = 99985, the six prime factors are {2,3,5,19997,33329,49993}. The middle term is even and not divisible by 3.
Nonsquare terms of A056809. First terms of A056809 absent here are A056809(4)=121=11^2, A056809(14)=841=29^2, A056809(55)=6241=79^2.
Cf. A179502 (Numbers k with the property that k^2, k^2+1 and k^2+2 are all semiprimes). - Zak Seidov, Oct 27 2015
The numbers k, k+1, k+2 have the form 2p-1, 2p, 2p+1 where p is an odd prime. A195685 gives the sequence of odd primes that generates these maximal runs of three consecutive integers with four positive divisors. - Timothy L. Tiffin, Jul 05 2016
a(n) is always 1 or 9 mod 12. - Charles R Greathouse IV, Mar 19 2022

Examples

			33, 34 and 35 all have 4 divisors.
85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B18.
  • David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 114.

Crossrefs

Programs

  • Haskell
    a039833 n = a039833_list !! (n-1)
    a039833_list = f a006881_list where
       f (u : vs@(v : w : xs))
         | v == u+1 && w == v+1 = u : f vs
         | otherwise            = f vs
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Mathematica
    lst = {}; Do[z = n^3 + 3*n^2 + 2*n; If[PrimeOmega[z/n] == PrimeOmega[z/(n + 2)] == 4 && PrimeNu[z] == 6, AppendTo[lst, n]], {n, 1, 5601, 2}]; lst (* Arkadiusz Wesolowski, Dec 11 2011 *)
    okQ[n_]:=Module[{cl={n,n+1,n+2}},And@@SquareFreeQ/@cl && Union[ DivisorSigma[ 0,cl]]=={4}]; Select[Range[1,6001,2],okQ] (* Harvey P. Dale, Dec 17 2011 *)
    SequencePosition[DivisorSigma[0,Range[6000]],{4,4,4}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    is(n)=n%4==1 && factor(n)[,2]==[1,1]~ && factor(n+1)[,2]==[1,1]~ && factor(n+2)[,2]==[1,1]~ \\ Charles R Greathouse IV, Aug 29 2016
    
  • PARI
    is(n)=my(t=n%12); if(t==1, isprime((n+2)/3) && isprime((n+1)/2) && factor(n)[,2]==[1,1]~, t==9 && isprime(n/3) && isprime((n+1)/2) && factor(n+2)[,2]==[1,1]~) \\ Charles R Greathouse IV, Mar 19 2022

Formula

A008966(a(n)) * A064911(a(n)) * A008966(a(n)+1) * A064911(a(n)+1) * A008966(a(n)+2) * A064911(a(n)+2) = 1. - Reinhard Zumkeller, Feb 26 2011

Extensions

Additional comments from Amarnath Murthy, Vladeta Jovovic, Labos Elemer and Benoit Cloitre, May 08 2002

A045940 Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).

Original entry on oeis.org

602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4023, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7314, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9162
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), this sequence (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Cf. A045932 (similar, with omega).

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3],AppendTo[lst,n]],{n,0,8!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    SequencePosition[PrimeOmega[Range[10000]],{x_,x_,x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 02 2020 *)
  • PARI
    isok(n) = (bigomega(n) == bigomega(n+1)) && (bigomega(n+1) == bigomega(n+2)) && (bigomega(n+2) == bigomega(n+3)); \\ Michel Marcus, Jan 06 2015

A045941 Numbers m such that the factorizations of m..m+4 have the same number of primes (including multiplicities).

Original entry on oeis.org

602, 2522, 2523, 4202, 4921, 4922, 5034, 5282, 7730, 12122, 18241, 18242, 18571, 19129, 21931, 23161, 23305, 25203, 25553, 25554, 27290, 27291, 29233, 30354, 30793, 32035, 33843, 34561, 35124, 35714, 36001, 36835, 40313, 40314, 40394, 42182, 45265, 52854
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), this sequence (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

A045942 Numbers m such that the factorizations of m..m+5 have the same number of primes (including multiplicities).

Original entry on oeis.org

2522, 4921, 18241, 25553, 27290, 40313, 90834, 95513, 98282, 98705, 117002, 120962, 136073, 136865, 148682, 153794, 181441, 181554, 185825, 204323, 211673, 211674, 212401, 215034, 216361, 231002, 231665, 234641, 236041, 236634, 266282, 281402, 284344, 285410
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), this sequence (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2]==f[n+3]==f[n+4]==f[n+5],AppendTo[lst,n]],{n,0,10!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    SequencePosition[PrimeOmega[Range[300000]],{x_,x_,x_,x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Aug 29 2025 *)

A123103 Numbers m such that the factorizations of m..m+6 have the same number of primes (including multiplicities).

Original entry on oeis.org

211673, 298433, 355923, 381353, 460801, 506521, 540292, 568729, 690593, 705953, 737633, 741305, 921529, 1056529, 1088521, 1105553, 1141985, 1187121, 1362313, 1721522, 1811704, 1828070, 2016721, 2270633, 2369809, 2535721, 2590985
Offset: 1

Views

Author

Zak Seidov, Nov 05 2006

Keywords

Comments

Subset of A045940, Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).

Examples

			211673 = 7*11*2749, 211674 = 2*3*35279, 211675 = 5^2*8467, 211676 = 2^2*52919, 211677 = 3*37*1907, 211678 = 2*109*971, 211679 = 13*19*857 are all triprimes.
355923 = 3^2*71*557, 355924 = 2^2*101*881, 355925 = 5^2*23*619, 355926 = 2*3*137*433, 355927 = 11*13*19*131, 355928 = 2^3*44491, 355929 = 3*7*17*997 are all products of 4 primes (typo corrected _Zak Seidov_, Oct 24 2022).
		

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), this sequence (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    c=0; p1=0; for(n=2, 10^8, p2=bigomega(n); if(p1==p2, c++; if(c>=6, print1(n-6 ",")), c=0; p1=p2)) /* Donovan Johnson, Mar 20 2013 */

Extensions

a(14)-a(27) from Donovan Johnson, Mar 26 2010

A123201 Numbers m such that the factorizations of m..m+7 have the same number of primes (including multiplicities).

Original entry on oeis.org

3405122, 3405123, 6612470, 8360103, 8520321, 9306710, 10762407, 12788342, 12788343, 15212151, 15531110, 16890901, 17521382, 17521383, 21991382, 21991383, 22715270, 22715271, 22841702, 22841703, 22914722, 22914723
Offset: 1

Views

Author

Zak Seidov, Nov 05 2006

Keywords

Comments

Note that because 3405130 = 2*5*167*2039 is also the product of 4 primes, 3405122 is the first m such that numbers m..m+8 are products of the same number k of primes (k=4).

Examples

			3405122 = 2*7*29*8387, 3405123 = 3^2*19*19913, 3405124 = 2^2*127*6703, 3405125 = 5^3*27241, 3405126 = 2*3*59*9619, 3405127 = 11*23*43*313, 3405128 = 2^3*425641, 3405129 = 3*7*13*12473 all products of 4 primes.
		

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), this sequence (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    c=0; p1=0; for(n=2, 10^8, p2=bigomega(n); if(p1==p2, c++; if(c>=7, print1(n-7 ",")), c=0; p1=p2)) \\ Donovan Johnson, Mar 20 2013

Extensions

a(7)-a(22) from Donovan Johnson, Apr 09 2010

A358017 Numbers m such that the factorizations of m..m+8 have the same number of primes (including multiplicities).

Original entry on oeis.org

3405122, 12788342, 17521382, 21991382, 22715270, 22841702, 22914722, 23553171, 27451669, 27793334, 49361762, 49799889, 49799890, 50727123, 51359029, 52154450, 53758502, 57379970, 60975410, 60975411, 75638644, 76502870, 76724630, 85432322
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), this sequence (k=8), A358018 (k=9), A358019 (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=3405122,lim\1+8, my(t=bigomega(n)); if(t==cur, if(ct++>7, listput(v,n[1]-8)), cur=t; ct=0)); Vec(v)

A358018 Numbers m such that the factorizations of m..m+9 have the same number of primes (including multiplicities).

Original entry on oeis.org

49799889, 60975410, 92017202, 202536181, 202536182, 249221990, 284007602, 314623105, 326857970, 331212422, 405263521, 421980949, 476360643, 506580949, 520309427, 532896662, 572636822, 666966962, 703401061, 749908502, 816533270
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), this sequence (k=9), A358019 (k=10).

Programs

  • PARI
    list(lim)=my(v=List(),ct,cur); forfactored(n=49799889,lim\1+9, my(t=bigomega(n)); if(t==cur, if(ct++>8, listput(v,n[1]-9)), cur=t; ct=0)); Vec(v)
Showing 1-10 of 21 results. Next