cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278313 Number of letters "I" in Roman numeral representation of n.

Original entry on oeis.org

1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0, 1, 2, 3, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Period 5: repeat [1, 2, 3, 1, 0]. - Omar E. Pol, Nov 19 2016
For large numbers we have the examples: 8000 -> VMMM (underline the V); 80000 -> LXXX (underline the LXXX); 800000 -> DCCC (underline the DCCC); ... see The Rules of Roman Numerals under Links. - José de Jesús Camacho Medina, Nov 21 2016

Examples

			a(1) = 1 because 1 in Roman numerals is I, which contains only one I.
a(2) = 2 because 2 in Roman numerals is II, which contains two I's.
a(3) = 3 because 3 in Roman numerals is III, which contains three I's.
a(4) = 1 because 4 in Roman numerals is IV, which contains only one I.
a(5) = 0 because 5 in Roman numerals is V, which does not contain I's.
a(6) = 1 because 6 in Roman numerals is VI, which contains only one I.
a(7) = 2 because 7 in Roman numerals is VII, which contains two I's.
a(8) = 3 because 8 in Roman numerals is VIII, which contains three I's.
a(9) = 1 because 9 in Roman numerals is IX, which contains only one I.
a(10) = 0 because 10 in Roman numerals is X, which does not contain I's.
a(50) = 0 because 50 in Roman numerals is L, which does not contain I's.
a(100) = 0 because 100 in Roman numerals is C, which does not contain I's.
a(500) = 0 because 500 in Roman numerals is D, which does not contain I's.
a(551) = 1 because 551 in Roman numerals is DLI, which contains only one I.
a(1000) = 0 because 1000 in Roman numerals is M, which does not contain I's.
a(1001) = 1 because 1001 in Roman numerals is MI, which contains only one I.
		

Crossrefs

Cf. A006968.

Programs

  • Magma
    &cat [[1, 2, 3, 1, 0]^^30]; // Wesley Ivan Hurt, Dec 26 2016
    
  • Maple
    A278313:= n -> [1, 2, 3, 1, 0][(n mod 5)+1]: seq(A278313(n), n=0..100); # Wesley Ivan Hurt, Dec 26 2016
  • Mathematica
    Table[Mod[n, 5] - Mod[3n + 2n^2 + 3n^3 + 2n^4, 5], {n, 100}]
    Table[StringCount[RomanNumeral@ n, "I"], {n, 105}] (* Michael De Vlieger, Nov 24 2016, Version 10.2 *)
  • PARI
    Vec(x*(1 + 2*x + 3*x^2 + x^3)/((1 - x)*(1 + x + x^2 + x^3 + x^4)) + O(x^50)) \\ G. C. Greubel, Dec 26 2016

Formula

a(n) = (n mod 5) - ((3n + 2n^2 + 3n^3 + 2n^4) mod 5).
G.f.: x*(1 + 2*x + 3*x^2 + x^3)/((1 - x)*(1 + x + x^2 + x^3 + x^4)). - Ilya Gutkovskiy, Nov 20 2016
From Wesley Ivan Hurt, Dec 26 2016: (Start)
a(n) = a(n-5) for n > 5.
a(n) = (7 + (n mod 5) + 2*((n+1) mod 5) - ((n+2) mod 5) - ((n+3) mod 5) - ((n+4) mod 5))/5. (End)
a(n) = 1 + (2/5)*(1 + 2*cos(2*(n-3)*Pi/5) + 2*cos(4*(n-3)*Pi/5) + cos(2*(n-2)*Pi/5) + cos(4*(n-2)*Pi/5) - cos(2*n*Pi/5) - cos(4*n*Pi/5)). - Wesley Ivan Hurt, Oct 04 2018