A278476 a(n) = floor((1 + sqrt(2))^3*a(n-1)) for n>0, a(0) = 1.
1, 14, 196, 2757, 38793, 545858, 7680804, 108077113, 1520760385, 21398722502, 301102875412, 4236838978269, 59616848571177, 838872718974746, 11803834914217620, 166092561518021425, 2337099696166517569, 32885488307849267390, 462733936006056261028
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..869
- Index entries for linear recurrences with constant coefficients, signature (15,-13,-1).
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2)/((1-x)*(1-14*x-x^2)))); // G. C. Greubel, Oct 10 2018 -
Maple
seq(coeff(series((1-x-x^2)/((1-x)*(1-14*x-x^2)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 11 2018
-
Mathematica
RecurrenceTable[{a[0] == 1, a[n] == Floor[(1 + Sqrt[2])^3 a[n - 1]]}, a, {n, 18}] LinearRecurrence[{15, -13, -1}, {1, 14, 196}, 19] CoefficientList[Series[(1-x-x^2)/((1-x)*(1-14*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Oct 10 2018 *)
-
PARI
Vec((1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)) + O(x^50)) \\ G. C. Greubel, Nov 24 2016
Formula
G.f.: (1 - x - x^2)/((1 - x)*(1 - 14*x - x^2)).
a(n) = 15*a(n-1) - 13*a(n-2) - a(n-3).
a(n) = ((65 - 52*sqrt(2))*(7 - 5*sqrt(2))^n + 13*(5 + 4*sqrt(2))*(7 + 5*sqrt(2))^n + 10)/140.
Comments