cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278618 a(n) = Sum_{j=0..n/2} binomial(n-j-1,n-2*j)*binomial(2*n+1,j).

Original entry on oeis.org

1, 0, 5, 7, 45, 121, 533, 1800, 7157, 26239, 101640, 384583, 1483925, 5693247, 22013059, 85076183, 330014421, 1281349195, 4985766650, 19422653367, 75775163028, 295953650376, 1157212653030, 4529183513913, 17743019073381, 69565441895001
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n - j - 1, n - 2*j]*Binomial[2*n + 1, j], {j, 0, n/2}], {n,0,50}] (* G. C. Greubel, Jun 06 2017 *)
  • Maxima
    A(x):=(12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x));
    B(x):=1/((x+1)*sqrt(-3*x^2-2*x+1));
    C(x):=sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4;
    taylor(x*A(x)/C(x)*B(C(x)),x,0,20);
    
  • PARI
    for(n=0,25, print1(sum(j=0,n, binomial(n-j-1,n-2*j)*binomial(2*n+1,j)), ", ")) \\ G. C. Greubel, Jun 06 2017

Formula

G.f.: x*A(x)/C(x)*B(C(x)), where
A(x) = (12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x)),
B(x) = 1/((x+1)*sqrt(-3*x^2-2*x+1)),
C(x) = sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4.
a(n) ~ (1 - 1/sqrt(5)) * 4^n / sqrt(Pi*n). - Vaclav Kotesovec, Nov 24 2016
a(n) = (2*n + 1)*3F2(1-n/2,3/2-n/2,-2*n; 2,2-n; 4) for n>1. - Ilya Gutkovskiy, Nov 24 2016
Conjecture: 2*n*(5*n-8)*(2*n-1)*(n+1)*a(n) -n*(115*n^3-344*n^2+299*n-82)*a(n-1) -4*(2*n-1)*(5*n^3+27*n^2-74*n+30)*a(n-2) +36*(n-2)*(5*n-3)*(2*n-1)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Dec 02 2016