A278678 Popularity of left children in treeshelves avoiding pattern T321.
1, 4, 19, 94, 519, 3144, 20903, 151418, 1188947, 10064924, 91426347, 887296422, 9164847535, 100398851344, 1162831155151, 14198949045106, 182317628906283, 2455925711626404, 34632584722468115, 510251350142181470, 7840215226100517191, 125427339735162102104
Offset: 2
Keywords
Examples
Treeshelves of size 3: 1 1 1 1 1 1 / \ / \ / \ / \ 2 2 / \ 2 \ / 2 / \ 2 2 3 3 3 3 \ / 3 3 Pattern T321: 1 / 2 / 3 Treeshelves of size 3 that avoid pattern T321: 1 1 1 1 1 \ / \ / \ / \ 2 / \ 2 \ / 2 \ 2 2 3 3 3 \ / 3 3 Popularity of left children is 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..483
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50
Programs
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) end: a:= n-> (n+1)*b(n+1, 0)-b(n+2, 0): seq(a(n), n=2..25); # Alois P. Heinz, Oct 27 2017
-
Mathematica
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]]; a[n_] := (n+1)*b[n+1, 0] - b[n+2, 0]; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
Python
# by Taylor expansion from sympy import * from sympy.abc import z h = (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))**2 NUMBER_OF_COEFFS = 20 coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs() coeffs.reverse() # and remove first coefficient 1 that corresponds to O(n**k) coeffs.pop(0) print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
Formula
E.g.f.: (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))^2.
a(n) = (n+1)*e(n) - e(n+1), where e(n) is the n-th Euler number (see A000111).
Asymptotic: a(n) ~ 8*(Pi-2) / Pi^3 * n^2 * (2/Pi)^n.
Comments