A278679 Popularity of left children in treeshelves avoiding pattern T213.
1, 5, 24, 128, 770, 5190, 38864, 320704, 2894544, 28382800, 300575968, 3419882304, 41612735632, 539295974000, 7417120846080, 107904105986048, 1655634186628352, 26721851169634560, 452587550053179392, 8026445538106839040, 148751109541600495104
Offset: 2
Keywords
Examples
Treeshelves of size 3: 1 1 1 1 1 1 / \ / \ / \ / \ 2 2 / \ 2 \ / 2 / \ 2 2 3 3 3 3 \ / 3 3 Pattern T213: 1 / \ 2 \ 3 Treeshelves of size 3 that avoid pattern T213: 1 1 1 1 1 / \ / \ / \ 2 2 / \ / 2 / \ 2 2 3 3 3 \ / 3 3 Popularity of left children is 5.
Links
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), p. 35-50.
Programs
-
Mathematica
terms = 21; egf = (E^(Sqrt[2] z)(4z - 4) - (Sqrt[2] - 2) E^(2 Sqrt[2] z) + Sqrt[2] + 2)/((Sqrt[2] - 2) E^(Sqrt[2] z) + 2 + Sqrt[2])^2; CoefficientList[egf + O[z]^(terms + 2), z]*Range[0, terms + 1]! // Round // Drop[#, 2]& (* Jean-François Alcover, Jan 26 2019 *)
-
Python
## by Taylor expansion from sympy import * from sympy.abc import z h = (exp(sqrt(2)*z) * (4*z-4) - (sqrt(2)-2)*exp(2*sqrt(2)*z) + sqrt(2) + 2) / ((sqrt(2)-2)*exp(sqrt(2)*z) + 2 + sqrt(2))**2 NUMBER_OF_COEFFS = 20 coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs() coeffs.reverse() ## and remove first coefficient 1 that corresponds to O(n**k) coeffs.pop(0) print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
Formula
E.g.f.: (e^(sqrt(2)*z) * (4*z-4) - (sqrt(2)-2)*e^(2*sqrt(2)*z) + sqrt(2) + 2) / ((sqrt(2)-2)*e^(sqrt(2)*z) + 2 + sqrt(2))^2.
Asymptotic: n * (sqrt(2) / log(2*sqrt(2)+3) )^(n+1).
Extensions
More terms from Alois P. Heinz, Oct 27 2017
Comments