cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278690 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2 in powers of x.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 88, 144, 225, 351, 531, 800, 1179, 1728, 2492, 3573, 5058, 7119, 9918, 13743, 18882, 25810, 35028, 47313, 63513, 84883, 112833, 149373, 196803, 258309, 337590, 439650, 570357, 737496, 950270, 1220688, 1563021, 1995642, 2540466, 3225386
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2016

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 18*x^4 + 31*x^5 + 54*x^6 + ...
G.f. = q + 2*q^25 + 5*q^49 + 9*q^73 + 18*q^97 + 31*q^121 + 54*q^145 + ... - _Michael Somos_, Nov 25 2019
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^k: A000726 (k=1), this sequence (k=2), A273845 (k=3), A182819 (k=4).
Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), this sequence (k=3), A160461 (k=5).
Cf. A298311.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 25 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 25 2019 */

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2.
a(n) ~ sqrt(5/3)*exp(sqrt(10*n)*Pi/3)/(12*n). - Vaclav Kotesovec, Nov 26 2016
Expansion of q^(-1/24) * eta(q^3) / eta(q)^2 in powers of q. - Michael Somos, Nov 25 2019
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 3. Cf. A000041 (k = 1), A015128 (k = 2), A298311 (k = 4) and A160461 (k = 5). - Peter Bala, Nov 17 2020