cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278714 Denominators of (n-1)*(n-3)/(6*(2*n-1)), for n >= 1. Denominators of Dedekind sum s(2, 2*n-1).

Original entry on oeis.org

1, 18, 1, 14, 27, 22, 13, 18, 17, 38, 63, 46, 5, 162, 29, 62, 99, 14, 37, 234, 41, 86, 27, 94, 49, 306, 53, 22, 171, 118, 61, 378, 13, 134, 207, 142, 73, 90, 77, 158, 243, 166, 17, 522, 89, 182, 279, 38, 97, 594, 101, 206, 63, 214, 109, 666, 113, 46, 351, 238
Offset: 1

Views

Author

Wolfdieter Lang, Nov 28 2016

Keywords

Comments

For the numerators see A278713, also for references and details.

Crossrefs

Cf. A278713.

Programs

  • Magma
    [Denominator((n-1)*(n-3)/(6*(2*n-1))): n in [1..60]]; // Vincenzo Librandi, Dec 08 2016
  • Maple
    seq(denom((n-1)*(n-3)/(6*(2*n-1))),n=1..100); # Robert Israel, Dec 07 2016
  • Mathematica
    Table[((n-1)(n-3))/(6(2n-1)),{n,60}]//Denominator (* Harvey P. Dale, Feb 10 2019 *)
  • PARI
    a(n) = denominator((n-1)*(n-3)/(6*(2*n-1))) \\ Felix Fröhlich, Nov 28 2016
    

Formula

a(n) = denominator((n-1)*(n-3)/(6*(2*n-1))) (in lowest terms), n >= 1.
a(n) = denominator(r(n)), with r(n) = s(2,2*n-1) where s(2,k) = Sum_{r=1..(k-1)} (r/k)*(2*r/k - floor(2*r/k)- 1/2), for odd k.
From Robert Israel, Dec 07 2016: (Start)
(2n+59) a(n) = (2n-1) a(n+30).
a(n) = 6(2n-1)/b(n) where
b(n) = 1 if n == 2, 14, 20, or 26 (mod 30)
b(n) = 2 if n == 5, 11, 17, or 29 (mod 30)
b(n) = 3 if n == 0, 4, 6, 10, 12, 16, 22, or 24 (mod 30)
b(n) = 5 if n == 8 (mod 30)
b(n) = 6 if n == 1, 7, 9, 15, 19, 21, 25, or 27 (mod 30)
b(n) = 10 if n == 23 (mod 30)
b(n) = 15 if n == 18 or 28 (mod 30)
b(n) = 30 if n == 3 or 13 (mod 30).
G.f.: x*(1+18*x+x^2+14*x^3+27*x^4+22*x^5+13*x^6+18*x^7+17*x^8+38*x^9+63*x^10+46*x^11
+5*x^12+162*x^13+29*x^14+62*x^15+99*x^16+14*x^17+37*x^18+234*x^19+41*x^20+86*x^21
+27*x^22+94*x^23+49*x^24+306*x^25+53*x^26+22*x^27+171*x^28+118*x^29+59*x^30
+342*x^31+11*x^32+106*x^33+153*x^34+98*x^35+47*x^36+54*x^37+43*x^38+82*x^39
+117*x^40+74*x^41+7*x^42+198*x^43+31*x^44+58*x^45+81*x^46+10*x^47+23*x^48
+126*x^49+19*x^50+34*x^51+9*x^52+26*x^53+11*x^54+54*x^55+7*x^56+2*x^57+9*x^58
+2*x^59)/(1-x^30)^2.
(End)