A278847 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.
1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..36
- Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
Programs
-
Maple
with(LinearAlgebra): a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))): seq(a(n), n=0..16); # after Alois P. Heinz
-
Mathematica
Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
-
PARI
a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018
Formula
a(n) ~ c * d^n * (n!)^3 / n, where d = 3.809076776112918119... and c = 1.07739642254738...
Comments