A278911 Odd numbers with prime sum of divisors.
9, 25, 289, 729, 1681, 2401, 3481, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 83521, 85849, 146689, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089
Offset: 1
Keywords
Examples
sigma(9) = 13 (prime).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in[2..10^7] | IsOdd(n) and IsPrime(SumOfDivisors(n)) and IsPrime(NumberOfDivisors(n))];
-
Maple
N:= 10^7: # to get all terms <= N Ps:= select(isprime, [seq(i,i=3..floor(N^(1/2)),2)]): es:= map(`-`,select(isprime, [seq(i,i=3..floor(log[3](N))+1,2)]),1): Pes:= [seq(seq([p,e],p=Ps),e=es)]: filter:= proc(pe) local v; v:= (pe[1]^(pe[2]+1)-1)/(pe[1]-1); pe[1]^pe[2] <= N and isprime(v) end proc: sort(map(pe -> pe[1]^pe[2], select(filter, Pes))); # Robert Israel, Jan 22 2019
-
Mathematica
Select[Range[1, 2*10^6, 2], PrimeQ@DivisorSigma[1, #] &] (* Michael De Vlieger, Dec 01 2016 *)
-
PARI
isok(n) = (n % 2) && isprime(sigma(n)); \\ Michel Marcus, Dec 01 2016
Formula
a(n) = A193070(n)^2. - Michel Marcus, Dec 01 2016
Comments