cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278911 Odd numbers with prime sum of divisors.

Original entry on oeis.org

9, 25, 289, 729, 1681, 2401, 3481, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 83521, 85849, 146689, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089
Offset: 1

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

Also odd numbers with prime number and sum of divisors; if the sum of divisors is prime, then the number of divisors is prime.
Values of prime sums are sorted in A247837.
Subsequence of A050150 (odd numbers with prime number of divisors).
Odd terms of A023194.
All terms are squares of the form p^e such that p is odd prime and e+1 is a prime.

Examples

			sigma(9) = 13 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10^7] | IsOdd(n) and IsPrime(SumOfDivisors(n)) and IsPrime(NumberOfDivisors(n))];
    
  • Maple
    N:= 10^7: # to get all terms <= N
    Ps:= select(isprime, [seq(i,i=3..floor(N^(1/2)),2)]):
    es:= map(`-`,select(isprime, [seq(i,i=3..floor(log[3](N))+1,2)]),1):
    Pes:= [seq(seq([p,e],p=Ps),e=es)]:
    filter:= proc(pe) local v; v:= (pe[1]^(pe[2]+1)-1)/(pe[1]-1); pe[1]^pe[2] <= N and isprime(v) end proc:
    sort(map(pe -> pe[1]^pe[2], select(filter, Pes))); # Robert Israel, Jan 22 2019
  • Mathematica
    Select[Range[1, 2*10^6, 2], PrimeQ@DivisorSigma[1, #] &] (* Michael De Vlieger, Dec 01 2016 *)
  • PARI
    isok(n) = (n % 2) && isprime(sigma(n)); \\ Michel Marcus, Dec 01 2016

Formula

a(n) = A193070(n)^2. - Michel Marcus, Dec 01 2016