cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A193070 Odd numbers N for which sigma(N^2) is prime.

Original entry on oeis.org

3, 5, 17, 27, 41, 49, 59, 71, 89, 101, 125, 131, 167, 169, 173, 289, 293, 383, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181, 1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931, 1973, 2129, 2197, 2273, 2309
Offset: 1

Views

Author

M. F. Hasler, Jul 15 2011

Keywords

Comments

The function sigma(n) (=A000203(n)) takes odd values when n is a square or twice a square. Thus, odd numbers n for which sigma(n) is prime (i.e. which are in A023194) must be odd squares. This sequence consists exactly of the square roots of these terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[1,2401,2],PrimeQ[DivisorSigma[1,#^2]]&] (* Harvey P. Dale, Mar 07 2015 *)
  • PARI
    forstep(N=1, 1e7, 2, isprime(sigma(N^2)) && print1(N", "))

Formula

a(n) = A278911(n)^(1/2). - Robert Israel, Jan 22 2019

A278914 a(n) is the smallest odd number k with prime sum of divisors such that tau(k) = n-th prime.

Original entry on oeis.org

9, 2401, 729, 9765625, 531441, 45949729863572161, 5559917313492231481, 1471383076677527699142172838322885948765175969, 10264895304762966931257013446474591264089923314972889033759201, 230466617897195215045509519405933293401
Offset: 2

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

tau(n) = A000005(n) = the number of divisors of n.
For n >= 7; a(n) > A023194(10000) = 5896704025969.

Examples

			a(2) = 9 because 9 is the smallest odd number with prime values of sum of divisors (sigma(9) = 13) such that tau(9) = 3 = 2nd prime.
		

Crossrefs

Programs

  • Magma
    A278914:=func; [A278914(n): n in[2..6]];
    
  • Mathematica
    A278914[n_] := NestWhile[NextPrime, 3, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1); Array[A278914, 10, 2] (* Davin Park, Dec 28 2016 *)
  • PARI
    a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k+=2); k;} \\ Michel Marcus, Dec 03 2016

Formula

a(n) = A101636(n)^(prime(n)-1). - Davin Park, Dec 10 2016

Extensions

More terms from Davin Park, Dec 11 2016

A273459 Even numbers such that the sum of the odd divisors is a prime p and the sum of the even divisors is 2p.

Original entry on oeis.org

18, 50, 578, 1458, 3362, 4802, 6962, 10082, 15842, 20402, 31250, 34322, 55778, 57122, 59858, 167042, 171698, 293378, 559682, 916658, 982802, 1062882, 1104098, 1158242, 1195058, 1367858, 1407842, 1414562, 1468898, 1659842, 2380562, 2406818, 2705138, 2789522
Offset: 1

Views

Author

Michel Lagneau, May 30 2016

Keywords

Comments

a(n) is of the form 2q^2 where q is an odd numbers for which sigma(q^2) is prime (A193070).
The corresponding primes p are 13, 31, 307, 1093, 1723, 2801, 3541, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 88741, 86143, 147073, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 830833, 1191373, 1204507, ...
We observe an interesting property: each prime p is element of A053183 (primes of the form m^2 + m + 1 when m is prime) or element of A247837 (primes of the form sigma(2m-1) for a number m) or element of both A053183 and A247837.
Examples:
The numbers 13, 31, 307, 1723, 3541, 5113,... are in A053183;
The numbers 13, 31, 307, 1093, 1723, 2801, 3541,...are in A247837;
The numbers 13, 31, 307, 1723, 3541,... are in A053183 and A247837.

Examples

			18 is in the sequence because the divisors of 18 are {1, 2, 3, 6, 9, 18}. The sum of the odd divisors is 1 + 3 + 9 = 13 and the sum of the even divisors is 2 + 6 + 18 = 26 = 2*13.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2  to 500000 do:
       y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
         for k from 1 to n1 do:
           if irem(y[k], 2)=0
            then
            s0:=s0+ y[k]:
            else
            s1:=s1+ y[k]:
          fi:
         od:
         ii:=0:
            if isprime(s1) and s0=2*s1
            then
            printf(`%d, `, n):
             else fi:
         od:
  • Mathematica
    Select[Range[2, 3000000, 2], And[PrimeQ[Total@ Select[#, EvenQ]/2], PrimeQ@ Total@ Select[#, OddQ]] &@ Divisors@ # &] (* Michael De Vlieger, May 30 2016 *)
    sodpQ[n_]:=Module[{d=Divisors[n],s},s=Total[Select[d,OddQ]];PrimeQ[ s] && Total[ Select[d,EvenQ]]==2s]; Select[Range[2,279*10^4,2],sodpQ] (* Harvey P. Dale, Dec 01 2020 *)
    2 * Select[Range[1, 1200, 2]^2, PrimeQ@DivisorSigma[1, #] &] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    is(n)=my(t); n%4==2 && issquare(n/2,&t) && isprime(n/2+t+1) \\ Charles R Greathouse IV, Jun 08 2016

Formula

a(n) >> n^2. - Charles R Greathouse IV, Jun 08 2016
a(n) = 2 * A278911(n) = 2 * A193070(n)^2. - Amiram Eldar, Jul 19 2022
Showing 1-3 of 3 results.