cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A278911 Odd numbers with prime sum of divisors.

Original entry on oeis.org

9, 25, 289, 729, 1681, 2401, 3481, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 83521, 85849, 146689, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089
Offset: 1

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

Also odd numbers with prime number and sum of divisors; if the sum of divisors is prime, then the number of divisors is prime.
Values of prime sums are sorted in A247837.
Subsequence of A050150 (odd numbers with prime number of divisors).
Odd terms of A023194.
All terms are squares of the form p^e such that p is odd prime and e+1 is a prime.

Examples

			sigma(9) = 13 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10^7] | IsOdd(n) and IsPrime(SumOfDivisors(n)) and IsPrime(NumberOfDivisors(n))];
    
  • Maple
    N:= 10^7: # to get all terms <= N
    Ps:= select(isprime, [seq(i,i=3..floor(N^(1/2)),2)]):
    es:= map(`-`,select(isprime, [seq(i,i=3..floor(log[3](N))+1,2)]),1):
    Pes:= [seq(seq([p,e],p=Ps),e=es)]:
    filter:= proc(pe) local v; v:= (pe[1]^(pe[2]+1)-1)/(pe[1]-1); pe[1]^pe[2] <= N and isprime(v) end proc:
    sort(map(pe -> pe[1]^pe[2], select(filter, Pes))); # Robert Israel, Jan 22 2019
  • Mathematica
    Select[Range[1, 2*10^6, 2], PrimeQ@DivisorSigma[1, #] &] (* Michael De Vlieger, Dec 01 2016 *)
  • PARI
    isok(n) = (n % 2) && isprime(sigma(n)); \\ Michel Marcus, Dec 01 2016

Formula

a(n) = A193070(n)^2. - Michel Marcus, Dec 01 2016

A278913 a(n) is the smallest number k with prime sum of divisors such that tau(k) = n-th prime.

Original entry on oeis.org

2, 4, 16, 64, 9765625, 4096, 65536, 262144, 1471383076677527699142172838322885948765175969, 10264895304762966931257013446474591264089923314972889033759201, 1073741824, 18701397461209715023927088008788055619800417991632621566284510161
Offset: 1

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

tau(n) = A000005(n) = the number of divisors of n.
a(11) = 1073741824; a(n) > A023194(10000) = 5896704025969 for n = 9, 10 and n >= 12.

Examples

			a(3) = 16 because 16 is the smallest number with prime values of sum of divisors (sigma(16) = 31) such that tau(16) = 5 = 3rd prime.
		

Crossrefs

Programs

  • Magma
    A278913:=func; [A278913(n): n in[1..8]];
    
  • Mathematica
    A278913[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1) (* Davin Park, Dec 28 2016 *)
  • PARI
    a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k++); k;} \\ Michel Marcus, Dec 03 2016

Formula

a(n) = A123487(n)^(prime(n)-1). - Davin Park, Dec 10 2016

Extensions

More terms from Davin Park, Dec 08 2016
Showing 1-2 of 2 results.