A278913 a(n) is the smallest number k with prime sum of divisors such that tau(k) = n-th prime.
2, 4, 16, 64, 9765625, 4096, 65536, 262144, 1471383076677527699142172838322885948765175969, 10264895304762966931257013446474591264089923314972889033759201, 1073741824, 18701397461209715023927088008788055619800417991632621566284510161
Offset: 1
Keywords
Examples
a(3) = 16 because 16 is the smallest number with prime values of sum of divisors (sigma(16) = 31) such that tau(16) = 5 = 3rd prime.
Links
- Davin Park, Table of n, a(n) for n = 1..50
Programs
-
Magma
A278913:=func
; [A278913(n): n in[1..8]]; -
Mathematica
A278913[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1) (* Davin Park, Dec 28 2016 *)
-
PARI
a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k++); k;} \\ Michel Marcus, Dec 03 2016
Formula
a(n) = A123487(n)^(prime(n)-1). - Davin Park, Dec 10 2016
Extensions
More terms from Davin Park, Dec 08 2016
Comments