A279051 Sum of odd nonprime divisors of n.
1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 16, 1, 1, 10, 1, 1, 22, 1, 1, 1, 26, 1, 37, 1, 1, 16, 1, 1, 34, 1, 36, 10, 1, 1, 40, 1, 1, 22, 1, 1, 70, 1, 1, 1, 50, 26, 52, 1, 1, 37, 56, 1, 58, 1, 1, 16, 1, 1, 94, 1, 66, 34, 1, 1, 70, 36, 1, 10, 1, 1, 116, 1, 78, 40, 1, 1, 118, 1, 1, 22, 86, 1, 88, 1, 1, 70, 92, 1, 94, 1, 96, 1, 1
Offset: 1
Keywords
Examples
a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Ilya Gutkovskiy, Extended graphical example
- Eric Weisstein's World of Mathematics, Odd Divisor Function
- Index entries for sequences related to sums of divisors
Programs
-
Maple
with(numtheory): a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, Jan 18 2017
-
Mathematica
Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}] nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]
-
PARI
a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ Michel Marcus, Sep 18 2017
Formula
G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = Sum_{d|n, d odd nonprime} d.
a(A093641(n)) = 1.