cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279051 Sum of odd nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 16, 1, 1, 10, 1, 1, 22, 1, 1, 1, 26, 1, 37, 1, 1, 16, 1, 1, 34, 1, 36, 10, 1, 1, 40, 1, 1, 22, 1, 1, 70, 1, 1, 1, 50, 26, 52, 1, 1, 37, 56, 1, 58, 1, 1, 16, 1, 1, 94, 1, 66, 34, 1, 1, 70, 36, 1, 10, 1, 1, 116, 1, 78, 40, 1, 1, 118, 1, 1, 22, 86, 1, 88, 1, 1, 70, 92, 1, 94, 1, 96, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 17 2017

Keywords

Examples

			a(9) = 10 because 9 has 3 divisors {1, 3, 9} among which 2 are odd nonprime {1, 9} therefore 1 + 9 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(d::even or d::prime, 0, d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    Table[DivisorSum[n, #1 &, Mod[#1, 2] == 1 && ! PrimeQ[#1] &], {n, 97}]
    nmax = 97; Rest[CoefficientList[Series[Sum[k x^k/(1 + x^k), {k, 1, nmax}] - Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    a(n) = sumdiv(n, d, !isprime(d)*(d%2)*d); \\ Michel Marcus, Sep 18 2017

Formula

G.f.: A(x) = B(x) - C(x), where B(x) = Sum_{k>=1} k*x^k/(1 + x^k), C(x) = Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = Sum_{d|n, d odd nonprime} d.
a(A093641(n)) = 1.