A279183 Numbers k such that phi(6k) = phi(6k-2), where phi is Euler's totient function A000010.
1, 2, 12, 152, 222, 362, 432, 992, 1517, 2532, 2567, 8472, 34732, 44092, 69312, 82752, 105852, 114392, 128672, 336992, 350082, 393132, 393552, 462747, 497712, 559872, 665817, 714502, 931432, 968952, 1126602, 1281867, 1389337, 1449992, 1638712, 1694292
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..761
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 67.
Programs
-
Magma
[n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n-2)]; // Vincenzo Librandi, Dec 11 2016
-
Mathematica
a = {}; Do[If[EulerPhi[6k] == EulerPhi[6 k - 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
-
PARI
isok(k) = eulerphi(6*k) == eulerphi(6*k-2); \\ Michel Marcus, Dec 11 2016
Extensions
More terms from Vincenzo Librandi, Dec 11 2016