cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A279011 Numbers k such that phi(6k) is either phi(6k-2) or phi(6k+2), where phi is Euler's totient function A000010.

Original entry on oeis.org

1, 2, 12, 152, 222, 268, 362, 432, 723, 992, 1517, 2532, 2567, 8472, 9718, 9858, 13498, 15738, 34732, 35898, 44092, 60363, 69312, 75168, 75973, 82752, 87208, 88888, 98198, 105852, 114392, 126848, 128672, 135368, 141093, 161268, 221223, 233788, 301513, 328358
Offset: 1

Views

Author

N. J. A. Sloane, Dec 10 2016

Keywords

Crossrefs

Cf. A000010.
Union of A279183 and A279184.

Programs

  • Magma
    [n: n in [1..1000000] | not (EulerPhi(6*n) eq EulerPhi(6*n-2)) eq (EulerPhi(6*n) eq EulerPhi(6*n+2))]; // Vincenzo Librandi, Dec 12 2016
  • Mathematica
    Select[Range[10^6], Function[k, Or @@ Map[EulerPhi[6 k] == EulerPhi@ # &, 6 k + {-2, 2}]]] (* Michael De Vlieger, Dec 12 2016 *)
    Select[Range[330000],EulerPhi[6#]==EulerPhi[6#-2]||EulerPhi[6#]==EulerPhi[6#+2]&] (* Harvey P. Dale, Jul 07 2025 *)

Extensions

More terms from Vincenzo Librandi, Dec 12 2016

A279184 Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.

Original entry on oeis.org

268, 723, 9718, 9858, 13498, 15738, 35898, 60363, 75168, 75973, 87208, 88888, 98198, 126848, 135368, 141093, 161268, 221223, 233788, 301513, 328358, 330633, 419148, 507648, 527928, 543468, 551238, 556418, 586018, 725958, 772508, 964588, 985728
Offset: 1

Views

Author

N. J. A. Sloane, Dec 10 2016

Keywords

Crossrefs

Cf. A000010.
A279011 is the union of A279183 and A279184.

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // Vincenzo Librandi, Dec 11 2016
    
  • Maple
    select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # Robert Israel, Dec 11 2016
  • Mathematica
    a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
  • PARI
    isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ Michel Marcus, Dec 11 2016

Extensions

a(8)-a(33) from Robert Israel, Dec 11 2016
Showing 1-2 of 2 results.