A279184 Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.
268, 723, 9718, 9858, 13498, 15738, 35898, 60363, 75168, 75973, 87208, 88888, 98198, 126848, 135368, 141093, 161268, 221223, 233788, 301513, 328358, 330633, 419148, 507648, 527928, 543468, 551238, 556418, 586018, 725958, 772508, 964588, 985728
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..794
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 67.
Programs
-
Magma
[n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // Vincenzo Librandi, Dec 11 2016
-
Maple
select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # Robert Israel, Dec 11 2016
-
Mathematica
a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
-
PARI
isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ Michel Marcus, Dec 11 2016
Extensions
a(8)-a(33) from Robert Israel, Dec 11 2016