A279316 Period 7: repeat [0, 1, 2, 3, 3, 2, 1].
0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Magma
&cat[[0, 1, 2, 3, 3, 2, 1]: n in [0..10]];
-
Maple
a:=n->[0, 1, 2, 3, 3, 2, 1][(n mod 7)+1]: seq(a(n), n=0..300);
-
Mathematica
CoefficientList[Series[x*(1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + x^5)/(1 - x^7), {x, 0, 100}], x] PadRight[{}, 120, {0, 1, 2, 3, 3, 2, 1}] (* Vincenzo Librandi, Dec 10 2016 *)
Formula
G.f.: x*(1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + x^5)/(1 - x^7).
a(n) = (1/2) * Sum_{i=1..2n} (-1)^floor((i-1)/7).
a(n) = a(n-7) for n > 6.
a(n) = A279313(2n)/2.
a(n) = -m*(m^5 - 21*m^4 + 160*m^3 - 525*m^2 + 739*m - 714)/360 where m = n mod 7. - Luce ETIENNE, Nov 18 2018