A279319 Period 16 zigzag sequence: repeat [0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1].
0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,-1,1).
Crossrefs
Programs
-
Magma
&cat[[0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]: n in [0..5]];
-
Mathematica
PadRight[{}, 120, {0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1}] (* Vincenzo Librandi, Dec 10 2016 *) With[{k = 16}, Table[Min[Abs[# - k], #] &@ Mod[n, k], {n, 0, 120}]] (* or *) CoefficientList[Series[x (1 + x) (1 + x^2) (1 + x^4)/((1 - x) (1 + x^8)), {x, 0, 120}], x] (* Michael De Vlieger, Dec 10 2016 *)
-
Python
def A279319(n): return (0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1)[n&15] # Chai Wah Wu, Mar 02 2023
Formula
a(n) = abs(n - 16*round(n/16)).
G.f.: x*(1 + x)*(1 + x^2)*(1 + x^4)/((1 - x)*(1 + x^8)). - Ilya Gutkovskiy, Dec 10 2016
a(n) = a(n-1)-a(n-8)+a(n-9). - Wesley Ivan Hurt, Nov 18 2021
a(n) = a(n-16) for n >= 16. - Wesley Ivan Hurt, Sep 07 2022
Comments