cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A186434 Number of isosceles triangles that can be formed from the n^2 points of n X n grid of points (or geoboard).

Original entry on oeis.org

0, 4, 36, 148, 444, 1064, 2200, 4024, 6976, 11284, 17396, 25620, 36812, 51216, 69672, 92656, 121392, 156092, 198364, 248292, 307988, 377816, 459072, 552216, 660704, 784076, 924340, 1082228, 1261132, 1460408, 1684464, 1931800, 2208368
Offset: 1

Views

Author

Martin Renner, Apr 10 2011, Apr 13 2011

Keywords

Comments

This counts triples of distinct points A,B,C such that A,B,C are the vertices of an isosceles triangle with nonzero area. It would be nice to have a formula. - N. J. A. Sloane, Apr 22 2016
Place all bounding boxes of A279413 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum_{i=1..n} Sum_{j=1..i} k * (n-i+1) * (n-j+1) * A279413(i,j) where k=1 when i=j and k=2 otherwise. - Lars Blomberg, Feb 20 2017

Crossrefs

Programs

  • Maple
    with(linalg):
    IsTriangle:=proc(points) local a,b,c; a:=points[3]-points[2]: b:=points[3]-points[1]: c:=points[2]-points[1]: if evalf(norm(a,2)+norm(b,2))>evalf(norm(c,2)) and evalf(norm(a,2)+norm(c,2))>evalf(norm(b,2)) and evalf(norm(b,2)+norm(c,2))>evalf(norm(a,2)) then true: else false: fi: end:
    IsIsoscelesTriangle:=proc(points) local a,b,c; a:=points[3]-points[2]: b:=points[3]-points[1]: c:=points[2]-points[1]: if IsTriangle(points) then if norm(a,2)=norm(b,2) or norm(a,2)=norm(c,2) or norm(b,2)=norm(c,2) then true: else false: fi: else false: fi; end:
    a:=proc(n) local P,TriangleSet,i,j,a,b,c; P:=[]: for i from 0 to n do for j from 0 to n do P:=[op(P),[i,j]]: od; od; TriangleSet:={}: for a from 1 to nops(P) do for b from a+1 to nops(P) do for c from b+1 to nops(P) do if IsIsoscelesTriangle([P[a],P[b],P[c]]) then TriangleSet:={op(TriangleSet),[P[a],P[b],P[c]]}; fi; od; od; od; return(nops(TriangleSet)): end:

Extensions

a(10)-a(33) from Nathaniel Johnston, Apr 25 2011

A279418 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute isosceles triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 2, 8, 0, 0, 2, 2, 16, 0, 0, 2, 4, 6, 16, 0, 0, 2, 0, 4, 2, 24, 0, 0, 2, 0, 2, 4, 6, 24, 0, 0, 2, 0, 6, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 8, 2, 8, 2, 40, 0, 0, 2, 0, 2, 4, 2, 8, 2, 4, 10, 40, 0, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,2,8
0,0,2,2,16
0,0,2,4,6,16
0,0,2,0,4,2,24
0,0,2,0,2,4,6,24
0,0,2,0,6,6,4,6,40
0,0,2,0,2,0,6,4,6,40
0,0,2,0,2,0,8,2,8,2,40
0,0,2,0,2,4,2,8,2,4,10,40
0,0,2,0,2,0,2,2,8,10,8,10,48
0,0,2,0,2,4,2,4,10,0,2,8,14,48
0,0,2,0,2,0,6,0,4,6,12,6,8,6,56
0,0,2,0,2,0,2,0,2,8,2,0,6,8,10,56
------
The vertex between the two equal sides is 'o'.
For n=3, k=3:
x.x   x..   o..   .x.   .x.   .o.   ..o   ..x
...   ..o   ..x   x..   ..x   ...   x..   o..
.o.   x..   .x.   ..o   o..   x.x   .x.   ..x
So T(3,3)=8
------
For n=6, k=4:
x....o   o....x   .x....   ....x.
......   ......   ......   ......
......   ......   ......   ......
.x....   ....x.   x....o   o....x
So T(6,4)=4
		

Crossrefs

Cf. A190317.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A279433 Triangle read by rows: T(n,k), n>=k>=1, is the number of right triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 6, 4, 0, 4, 12, 4, 0, 4, 6, 12, 12, 0, 4, 8, 12, 12, 4, 0, 4, 4, 6, 12, 20, 4, 0, 4, 4, 12, 12, 12, 20, 4, 0, 4, 4, 4, 14, 12, 20, 12, 12, 0, 4, 4, 4, 12, 12, 16, 12, 12, 20, 0, 4, 4, 8, 8, 6, 12, 20, 20, 20, 4, 0, 4, 4, 4, 4, 12, 28, 12, 12, 12
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,4
0,6,4
0,4,12,4
0,4,6,12,12
0,4,8,12,12,4
0,4,4,6,12,20,4
0,4,4,12,12,12,20,4
0,4,4,4,14,12,20,12,12
0,4,4,4,12,12,16,12,12,20
0,4,4,8,8,6,12,20,20,20,4
0,4,4,4,4,12,28,12,12,12,20,4
0,4,4,4,4,12,6,20,20,16,20,20,12
0,4,4,4,12,4,24,12,12,12,20,12,20,4
0,4,4,4,4,4,12,6,28,20,12,20,20,20,4
0,4,4,4,4,4,8,12,20,20,12,20,12,20,28,4
0,4,4,4,4,12,4,12,18,12,20,12,28,12,20,20,28
-----
The right angle is 'o'.
For n=2, k=2:
ox   xo   x.   .x
x.   .x   ox   xo
So T(2,2)=4
-----
For n=3, k=2:
o.x   x.x   x.o   x..   .o.   ..x
x..   .o.   ..x   o.x   x.x   x.o
So T(3,2)=6
		

Crossrefs

Cf. A077435.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A280639 Triangle read by rows: T(n,k), n>=k>=1, is the number of obtuse isosceles triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 8, 0, 2, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 12, 0, 2, 2, 2, 4, 0, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 0, 16, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 2, 2, 2, 2, 6, 4
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,0,0
0,0,0,4
0,2,0,0,4
0,0,0,0,0,8
0,2,2,0,0,0,8
0,0,0,0,0,0,0,12
0,2,2,2,4,0,0,0,12
0,0,0,4,0,0,0,0,0,16
0,2,2,2,2,0,0,0,0,0,16
0,0,0,0,0,0,0,0,0,0,0,20
0,2,2,2,2,6,4,4,4,0,0,0,20
-------
The obtuse angle is 'o'.
For n=4, k=4:
x...   x...   ...x   ...x
..o.   ....   .o..   ....
....   .o..   ....   ..o.
...x   ...x   x...   x...
So T(4,4)=4
-------
For n=5, k=2:
x...x   ..o..
..o..   x...x
So T(5,2)=2
		

Crossrefs

Cf. A190318.
See A279415 for right isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A280652 Triangle read by rows: T(n,k), n>=k>=1, is the number of obtuse triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 4, 8, 0, 12, 16, 20, 0, 18, 32, 36, 36, 0, 24, 48, 56, 60, 72, 0, 30, 62, 76, 84, 88, 104, 0, 36, 76, 104, 112, 120, 132, 140, 0, 42, 86, 130, 136, 152, 160, 184, 180, 0, 48, 100, 144, 180, 184, 192, 216, 232, 240, 0, 54, 110, 166, 210, 228, 232
Offset: 1

Views

Author

Lars Blomberg, Feb 26 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,4,8
0,12,16,20
0,18,32,36,36
0,24,48,56,60,72
0,30,62,76,84,88,104
0,36,76,104,112,120,132,140
0,42,86,130,136,152,160,184,180
0,48,100,144,180,184,192,216,232,240
0,54,110,166,210,228,232,252,268,284,312
0,60,124,188,240,272,272,296,316,336,352,372
0,66,134,202,258,314,328,332,352,372,400,428,436
0,72,148,224,288,352,380,400,408,432,448,480,508,536
-----
The obtuse angle is 'o'.
For n=3, k=2:
xo.   x..   .ox   ..x
..x   .ox   x..   xo.
So T(3,2)=4
-----
For n=3, k=3:
xo.   x..   x..   x..   .ox   ..x   ..x   ..x
...   o..   ..o   ...   ...   o..   ..o   ...
..x   ..x   ..x   .ox   x..   x..   x..   xo.
So T(3,3)=8
		

Crossrefs

Cf. A190020.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A280653 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 0, 0, 6, 22, 40, 0, 0, 2, 20, 46, 64, 0, 0, 2, 20, 44, 70, 96, 0, 0, 2, 8, 42, 76, 98, 136, 0, 0, 2, 8, 34, 74, 104, 138, 176, 0, 0, 2, 8, 22, 72, 110, 148, 186, 208, 0, 0, 2, 4, 18, 56, 112, 146, 188, 234, 264, 0, 0, 2, 4, 18
Offset: 1

Views

Author

Lars Blomberg, Feb 25 2017

Keywords

Comments

It appears that the main diagonal is 8*A014811.

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,6,24
0,0,6,22,40
0,0,2,20,46,64
0,0,2,20,44,70,96
0,0,2,8,42,76,98,136
0,0,2,8,34,74,104,138,176
0,0,2,8,22,72,110,148,186,208
0,0,2,4,18,56,112,146,188,234,264
0,0,2,4,18,44,94,152,198,244,286,328
0,0,2,4,18,32,86,150,196,254,296,342,392
-----
For n=3, k=3:
o.o   o..   o..   .o.   .o.   .o.   ..o   ..o
...   ..o   ..o   o..   ..o   ...   o..   o..
.o.   o..   .o.   ..o   o..   o.o   .o.   ..o
so T(3,3)=8
-----
For n=4, k=3:
o..o   o..o   o...   .o..   ..o.   ...o
....   ....   ...o   ....   ....   o...
.o..   ..o.   o...   o..o   o..o   ...o
so T(4,3)=6
-----
For n=6, k=3:
o.....   .....o
.....o   o.....
o.....   .....o
so T(6,3)=2
		

Crossrefs

Cf. A190019.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A279432 for all triangles.

A279415 Triangle read by rows: T(n,k), n>=k>=1, is the number of right isosceles triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 2, 4, 0, 0, 4, 4, 0, 0, 2, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 2, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 2, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 2, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 2, 4, 4
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,4
0,2,4
0,0,4,4
0,0,2,4,4
0,0,0,4,4,4
0,0,0,2,4,4,4
0,0,0,0,4,4,4,4
0,0,0,0,2,4,4,4,4
0,0,0,0,0,4,4,4,4,4
0,0,0,0,0,2,4,4,4,4,4
0,0,0,0,0,0,4,4,4,4,4,4
0,0,0,0,0,0,2,4,4,4,4,4,4
-------
The right angle is 'o'.
For n=4, k=3:
x...   .o..   ..o.   ...x
...x   ...x   x...   x...
.o..   x...   ...x   ..o.
So T(4,3)=4
-------
For n=4, k=4:
o..x   x..o   x...   ...x
....   ....   ....   ....
....   ....   ....   ....
x...   ...x   o..x   x..o
So T(4,4)=4
		

Crossrefs

Cf. A187452.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A279432 Triangle read by rows: T(n,k), n>=k>=1, is the number of triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 10, 20, 0, 16, 34, 48, 0, 22, 44, 70, 88, 0, 28, 58, 88, 118, 140, 0, 34, 68, 102, 140, 178, 204, 0, 40, 82, 124, 166, 208, 250, 280, 0, 46, 92, 142, 184, 238, 284, 334, 368, 0, 52, 106, 156, 214, 268, 318, 376, 430, 468, 0, 58, 116, 178, 236, 290
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Comments

T(n,k) = A279433(n,k) + A280652(n,k) + A280653(n,k).
It appears that the main diagonal is 4*A000326.

Examples

			Triangle begins:
0
0,4
0,10,20
0,16,34,48
0,22,44,70,88
0,28,58,88,118,140
0,34,68,102,140,178,204
0,40,82,124,166,208,250,280
0,46,92,142,184,238,284,334,368
0,52,106,156,214,268,318,376,430,468
0,58,116,178,236,290,356,418,476,538,580
0,64,130,196,262,328,394,460,526,592,658,704
-----
A right angle is marked 'r', an obtuse one 'o'.
For n=2, k=2
rx   xr   x.   .x
x.   .x   rx   xr
So T(2,2)=4.
-----
For n=3, k=2
xo.   r.x   x.x   x.r   x..   x..   .ox   .r.   ..x   ..x
..x   x..   .r.   ..x   r.x   .ox   x..   x.x   xo.   x.r
So T(3,2)=10.
		

Crossrefs

Cf. A045996.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.

A279414 a(n) is the total number of isosceles triangles having a bounding box n X k where k is in the range 1 to n inclusive.

Original entry on oeis.org

0, 4, 14, 22, 36, 48, 58, 66, 104, 100, 110, 118, 164, 148, 174, 174, 232, 200, 266, 226, 300, 272, 290, 282, 412, 332, 362, 358, 440, 376, 494, 386, 572, 464, 490, 490, 660, 476, 546, 562, 756, 552, 718, 582, 760, 692, 682, 634, 1004, 716, 862, 746, 900, 744
Offset: 1

Views

Author

Lars Blomberg, Feb 16 2017

Keywords

Comments

Row sums of A279413.

Crossrefs

A358532 a(n) is the row position of the next open point in the structure generated by adding the largest diamond possible at the next open point on a triangular grid of side n. See Comments and Example sections for more details.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 1, 3, 7, 1, 3, 6, 4, 10, 1, 9, 4, 7, 9, 5, 14, 1, 11, 5, 7, 8, 11, 14, 19, 1, 6, 6, 24, 9, 14, 20, 1, 8, 8, 8, 20, 8, 19, 24, 30, 15, 19, 19, 19, 27, 1, 19, 15, 16, 20, 28, 8, 39, 11, 24, 1, 11, 16, 26, 28, 29, 30, 39, 50, 20, 31, 32, 33
Offset: 1

Views

Author

John Tyler Rascoe, Nov 20 2022

Keywords

Comments

A structure of diamonds is built up successively by adding the largest possible diamond to the next open point within a triangular grid of side n. Each new diamond is added to the preceding structure of diamonds. At each step n, a new row of n open points is first added, extending the triangular grid.
Then the next open point is defined as the first open point encountered when the triangle is read by rows starting from the top row. a(n) is then the row position of the next open point.
Finally, starting at this open point the largest diamond that does not overlap any previous diamonds and fits within the triangular grid is added. Each diamond of side length k must cover exactly k^2 points, with the top corner on an open point. The points covered by the added diamond are then considered closed.
Is there a pattern for the values of n where a(n) = 1?

Examples

			Here zeros are the open points; closed points covered by the n-th diamond are replaced with n.
  ---------------------
  n=4       1          First a new row of 4 open points is added.
           2 3         Then the next open point is T(3,1) so a(4) = 1.
          4 0 0        Finally, the largest diamond fitting at T(3,1) is 1.
         0 0 0 0
  ---------------------
  n=5       1          First a new row of 5 open points is added.
           2 3         Then the next open point is T(3,2) so a(5) = 2.
          4 5 0        Finally, the largest diamond fitting at T(3,2) is 2.
         0 5 5 0
        0 0 5 0 0
  ---------------------
  n=6       1          First a new row of 6 open points is added.
           2 3         Then the next open point is T(3,3) so a(6) = 3.
          4 5 6        Finally, the largest diamond fitting at T(3,3) is 1.
         0 5 5 0
        0 0 5 0 0
       0 0 0 0 0 0
		

Crossrefs

Programs

  • Python
    # see linked program
Showing 1-10 of 10 results.