cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A279413 Triangle read by rows: T(n,k), n>=k>=1, is the number of isosceles triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 2, 12, 0, 0, 6, 16, 0, 2, 4, 6, 24, 0, 0, 2, 8, 10, 28, 0, 2, 4, 2, 8, 6, 36, 0, 0, 2, 0, 6, 8, 10, 40, 0, 2, 4, 2, 12, 10, 8, 10, 56, 0, 0, 2, 4, 2, 4, 10, 8, 10, 60, 0, 2, 4, 2, 4, 2, 12, 6, 12, 6, 60, 0, 0, 2, 0, 2, 4, 6, 12, 6, 8, 14, 64, 0, 2
Offset: 1

Views

Author

Lars Blomberg, Feb 16 2017

Keywords

Examples

			Triangle begins:
0
0, 4
0, 2, 12
0, 0, 6, 16
0, 2, 4, 6, 24
0, 0, 2, 8, 10, 28
0, 2, 4, 2, 8, 6, 36
0, 0, 2, 0, 6, 8, 10, 40
0, 2, 4, 2, 12, 10, 8, 10, 56
0, 0, 2, 4, 2, 4, 10, 8, 10, 60
0, 2, 4, 2, 4, 2, 12, 6, 12, 6, 60
0, 0, 2, 0, 2, 4, 6, 12, 6, 8, 14, 64
0, 2, 4, 2, 4, 6, 8, 10, 16, 14, 12, 14, 72
0, 0, 2, 0, 2, 4, 2, 8, 14, 4, 6, 12, 18, 76
0, 2, 4, 2, 4, 2, 8, 2, 8, 10, 16, 10, 12, 10, 84
0, 0, 2, 0, 6, 4, 2, 4, 6, 16, 6, 4, 10, 12, 14, 88
0, 2, 4, 2, 4, 2, 8, 2, 16, 6, 16, 10, 16, 6, 24, 10, 104
0, 0, 2, 0, 2, 0, 2, 4, 6, 4, 10, 12, 10, 12, 10, 12, 14, 100
0, 2, 4, 2, 4, 2, 12, 6, 4, 6, 12, 10, 20, 6, 12, 14, 16, 10, 124
0, 0, 2, 0, 2, 0, 2, 0, 2, 4, 6, 12, 10, 12, 10, 12, 18, 12, 10, 112
-----
Denote by 'o' the point adjacent to the two equal sides, and by 'x' the other two.
n=4, k=3:
...x  x...  .o..  ..o.  x...  ...x
o...  ...o  ...x  x...  ...x  x...
...x  x...  x...  ...x  .o..  ..o.
So T(4,3)=6.
-----
n=4,k=4:
o...  ...o  .x..  ..x.  o...  ...o  ..x.  .x..
...x  x...  ....  ....  ....  ....  ...x  x...
....  ....  ...x  x...  ...x  x...  ....  ....
.x..  ..x.  o...  ...o  ..x.  .x..  o...  ...o
-
...x  x...  x...  ...x  o..x  x..o  x...  ...x
.o..  ..o.  ....  ....  ....  ....  ....  ....
....  ....  .o..  ..o.  ....  ....  ....  ....
x...  ...x  ...x  x...  x...  ...x  o..x  x..o
So T(4,4)=16.
		

Crossrefs

See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A279418 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute isosceles triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 2, 8, 0, 0, 2, 2, 16, 0, 0, 2, 4, 6, 16, 0, 0, 2, 0, 4, 2, 24, 0, 0, 2, 0, 2, 4, 6, 24, 0, 0, 2, 0, 6, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 6, 4, 6, 40, 0, 0, 2, 0, 2, 0, 8, 2, 8, 2, 40, 0, 0, 2, 0, 2, 4, 2, 8, 2, 4, 10, 40, 0, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,2,8
0,0,2,2,16
0,0,2,4,6,16
0,0,2,0,4,2,24
0,0,2,0,2,4,6,24
0,0,2,0,6,6,4,6,40
0,0,2,0,2,0,6,4,6,40
0,0,2,0,2,0,8,2,8,2,40
0,0,2,0,2,4,2,8,2,4,10,40
0,0,2,0,2,0,2,2,8,10,8,10,48
0,0,2,0,2,4,2,4,10,0,2,8,14,48
0,0,2,0,2,0,6,0,4,6,12,6,8,6,56
0,0,2,0,2,0,2,0,2,8,2,0,6,8,10,56
------
The vertex between the two equal sides is 'o'.
For n=3, k=3:
x.x   x..   o..   .x.   .x.   .o.   ..o   ..x
...   ..o   ..x   x..   ..x   ...   x..   o..
.o.   x..   .x.   ..o   o..   x.x   .x.   ..x
So T(3,3)=8
------
For n=6, k=4:
x....o   o....x   .x....   ....x.
......   ......   ......   ......
......   ......   ......   ......
.x....   ....x.   x....o   o....x
So T(6,4)=4
		

Crossrefs

Cf. A190317.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A279433 Triangle read by rows: T(n,k), n>=k>=1, is the number of right triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 6, 4, 0, 4, 12, 4, 0, 4, 6, 12, 12, 0, 4, 8, 12, 12, 4, 0, 4, 4, 6, 12, 20, 4, 0, 4, 4, 12, 12, 12, 20, 4, 0, 4, 4, 4, 14, 12, 20, 12, 12, 0, 4, 4, 4, 12, 12, 16, 12, 12, 20, 0, 4, 4, 8, 8, 6, 12, 20, 20, 20, 4, 0, 4, 4, 4, 4, 12, 28, 12, 12, 12
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,4
0,6,4
0,4,12,4
0,4,6,12,12
0,4,8,12,12,4
0,4,4,6,12,20,4
0,4,4,12,12,12,20,4
0,4,4,4,14,12,20,12,12
0,4,4,4,12,12,16,12,12,20
0,4,4,8,8,6,12,20,20,20,4
0,4,4,4,4,12,28,12,12,12,20,4
0,4,4,4,4,12,6,20,20,16,20,20,12
0,4,4,4,12,4,24,12,12,12,20,12,20,4
0,4,4,4,4,4,12,6,28,20,12,20,20,20,4
0,4,4,4,4,4,8,12,20,20,12,20,12,20,28,4
0,4,4,4,4,12,4,12,18,12,20,12,28,12,20,20,28
-----
The right angle is 'o'.
For n=2, k=2:
ox   xo   x.   .x
x.   .x   ox   xo
So T(2,2)=4
-----
For n=3, k=2:
o.x   x.x   x.o   x..   .o.   ..x
x..   .o.   ..x   o.x   x.x   x.o
So T(3,2)=6
		

Crossrefs

Cf. A077435.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A280639 Triangle read by rows: T(n,k), n>=k>=1, is the number of obtuse isosceles triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 8, 0, 2, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 12, 0, 2, 2, 2, 4, 0, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 0, 16, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 2, 2, 2, 2, 6, 4
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,0
0,0,0
0,0,0,4
0,2,0,0,4
0,0,0,0,0,8
0,2,2,0,0,0,8
0,0,0,0,0,0,0,12
0,2,2,2,4,0,0,0,12
0,0,0,4,0,0,0,0,0,16
0,2,2,2,2,0,0,0,0,0,16
0,0,0,0,0,0,0,0,0,0,0,20
0,2,2,2,2,6,4,4,4,0,0,0,20
-------
The obtuse angle is 'o'.
For n=4, k=4:
x...   x...   ...x   ...x
..o.   ....   .o..   ....
....   .o..   ....   ..o.
...x   ...x   x...   x...
So T(4,4)=4
-------
For n=5, k=2:
x...x   ..o..
..o..   x...x
So T(5,2)=2
		

Crossrefs

Cf. A190318.
See A279415 for right isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A280653 Triangle read by rows: T(n,k), n>=k>=1, is the number of acute triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 0, 0, 6, 22, 40, 0, 0, 2, 20, 46, 64, 0, 0, 2, 20, 44, 70, 96, 0, 0, 2, 8, 42, 76, 98, 136, 0, 0, 2, 8, 34, 74, 104, 138, 176, 0, 0, 2, 8, 22, 72, 110, 148, 186, 208, 0, 0, 2, 4, 18, 56, 112, 146, 188, 234, 264, 0, 0, 2, 4, 18
Offset: 1

Views

Author

Lars Blomberg, Feb 25 2017

Keywords

Comments

It appears that the main diagonal is 8*A014811.

Examples

			Triangle begins:
0
0,0
0,0,8
0,0,6,24
0,0,6,22,40
0,0,2,20,46,64
0,0,2,20,44,70,96
0,0,2,8,42,76,98,136
0,0,2,8,34,74,104,138,176
0,0,2,8,22,72,110,148,186,208
0,0,2,4,18,56,112,146,188,234,264
0,0,2,4,18,44,94,152,198,244,286,328
0,0,2,4,18,32,86,150,196,254,296,342,392
-----
For n=3, k=3:
o.o   o..   o..   .o.   .o.   .o.   ..o   ..o
...   ..o   ..o   o..   ..o   ...   o..   o..
.o.   o..   .o.   ..o   o..   o.o   .o.   ..o
so T(3,3)=8
-----
For n=4, k=3:
o..o   o..o   o...   .o..   ..o.   ...o
....   ....   ...o   ....   ....   o...
.o..   ..o.   o...   o..o   o..o   ...o
so T(4,3)=6
-----
For n=6, k=3:
o.....   .....o
.....o   o.....
o.....   .....o
so T(6,3)=2
		

Crossrefs

Cf. A190019.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A279432 for all triangles.

A279415 Triangle read by rows: T(n,k), n>=k>=1, is the number of right isosceles triangles with integral coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 2, 4, 0, 0, 4, 4, 0, 0, 2, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 2, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 2, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 2, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 2, 4, 4
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Examples

			Triangle begins:
0
0,4
0,2,4
0,0,4,4
0,0,2,4,4
0,0,0,4,4,4
0,0,0,2,4,4,4
0,0,0,0,4,4,4,4
0,0,0,0,2,4,4,4,4
0,0,0,0,0,4,4,4,4,4
0,0,0,0,0,2,4,4,4,4,4
0,0,0,0,0,0,4,4,4,4,4,4
0,0,0,0,0,0,2,4,4,4,4,4,4
-------
The right angle is 'o'.
For n=4, k=3:
x...   .o..   ..o.   ...x
...x   ...x   x...   x...
.o..   x...   ...x   ..o.
So T(4,3)=4
-------
For n=4, k=4:
o..x   x..o   x...   ...x
....   ....   ....   ....
....   ....   ....   ....
x...   ...x   o..x   x..o
So T(4,4)=4
		

Crossrefs

Cf. A187452.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
See A279432 for all triangles.

A279432 Triangle read by rows: T(n,k), n>=k>=1, is the number of triangles with integer coordinates that have a bounding box of size n X k.

Original entry on oeis.org

0, 0, 4, 0, 10, 20, 0, 16, 34, 48, 0, 22, 44, 70, 88, 0, 28, 58, 88, 118, 140, 0, 34, 68, 102, 140, 178, 204, 0, 40, 82, 124, 166, 208, 250, 280, 0, 46, 92, 142, 184, 238, 284, 334, 368, 0, 52, 106, 156, 214, 268, 318, 376, 430, 468, 0, 58, 116, 178, 236, 290
Offset: 1

Views

Author

Lars Blomberg, Feb 27 2017

Keywords

Comments

T(n,k) = A279433(n,k) + A280652(n,k) + A280653(n,k).
It appears that the main diagonal is 4*A000326.

Examples

			Triangle begins:
0
0,4
0,10,20
0,16,34,48
0,22,44,70,88
0,28,58,88,118,140
0,34,68,102,140,178,204
0,40,82,124,166,208,250,280
0,46,92,142,184,238,284,334,368
0,52,106,156,214,268,318,376,430,468
0,58,116,178,236,290,356,418,476,538,580
0,64,130,196,262,328,394,460,526,592,658,704
-----
A right angle is marked 'r', an obtuse one 'o'.
For n=2, k=2
rx   xr   x.   .x
x.   .x   rx   xr
So T(2,2)=4.
-----
For n=3, k=2
xo.   r.x   x.x   x.r   x..   x..   .ox   .r.   ..x   ..x
..x   x..   .r.   ..x   r.x   .ox   x..   x.x   xo.   x.r
So T(3,2)=10.
		

Crossrefs

Cf. A045996.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.

A190020 Number of obtuse triangles on an n X n grid (or geoboard).

Original entry on oeis.org

0, 0, 24, 236, 1148, 3932, 10760, 25392, 53576, 103824, 188104, 322852, 529116, 835028, 1275360, 1893496, 2742208, 3886568, 5402448, 7381316, 9928860, 13168484, 17243896, 22319864, 28579720, 36237928, 45532720, 56732668
Offset: 1

Views

Author

Martin Renner, May 04 2011

Keywords

Comments

Place all bounding boxes of A280652 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = Sum_{i=1..n} Sum_{j=1..i} k * (n-i+1) * (n-j+1) * A280652(i,j) where k=1 when i=j and k=2 otherwise. - Lars Blomberg, Mar 02 2017
According to Langford (p. 243), the leading order is (97/150 + Pi/40)*C(n^2,3). See A093072. - Michael R Peake, Jan 15 2021

Crossrefs

Formula

a(n) = A045996(n) - A077435(n) - A190019(n).

Extensions

Extended by Ray Chandler, May 04 2011
Showing 1-8 of 8 results.