cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279497 Number of pentagonal numbers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2016

Keywords

Examples

			a(12) = 2 because 12 has 6 divisors {1,2,3,4,6,12} among which 2 divisors {1,12} are pentagonal numbers.
		

Crossrefs

Inverse Möbius transform of A255849.

Programs

Formula

G.f.: Sum_{k>=1} x^(k*(3*k-1)/2)/(1 - x^(k*(3*k-1)/2)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(3) - Pi/sqrt(3) = 1.482037... (A244641). - Amiram Eldar, Jan 02 2024
a(n) = Sum_{d|n} A255849(d). - Antti Karttunen, Jan 14 2025