cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279544 Number of length n inversion sequences avoiding the patterns 000, 010, 100, 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 214, 651, 2040, 6549, 21453, 71485, 241702, 827603, 2865087, 10014927, 35307628, 125427569, 448616693, 1614432373, 5842129120, 21247505098, 77631329535, 284832049361, 1049092809734, 3877749157355, 14380314221305, 53490244751332
Offset: 0

Views

Author

Megan A. Martinez, Dec 14 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 000, 010, 100, 110, 120, and 210.

Examples

			For n=3, the inversion sequences are 001, 002, 011, 012.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i=0, 1, add(
          b(n-min(m, j), i-1, abs(m-j)), j=1..n-i+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 15 2016
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[i == 0, 1, Sum[b[n - Min[m, j], i - 1, Abs[m - j]], {j, 1, n - i + 1}]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 0.0549097036253448014962069269284638611865763295943683310517... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(28) from Alois P. Heinz, Dec 14 2016
Name and description corrected by Nicholas R. Beaton, May 02 2024