A279544 Number of length n inversion sequences avoiding the patterns 000, 010, 100, 110, 120, and 210.
1, 1, 2, 4, 10, 26, 73, 214, 651, 2040, 6549, 21453, 71485, 241702, 827603, 2865087, 10014927, 35307628, 125427569, 448616693, 1614432373, 5842129120, 21247505098, 77631329535, 284832049361, 1049092809734, 3877749157355, 14380314221305, 53490244751332
Offset: 0
Keywords
Examples
For n=3, the inversion sequences are 001, 002, 011, 012.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Programs
-
Maple
b:= proc(n, i, m) option remember; `if`(i=0, 1, add( b(n-min(m, j), i-1, abs(m-j)), j=1..n-i+1)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..30); # Alois P. Heinz, Dec 15 2016
-
Mathematica
b[n_, i_, m_] := b[n, i, m] = If[i == 0, 1, Sum[b[n - Min[m, j], i - 1, Abs[m - j]], {j, 1, n - i + 1}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
Formula
a(n) ~ c * 4^n / n^(3/2), where c = 0.0549097036253448014962069269284638611865763295943683310517... - Vaclav Kotesovec, Oct 07 2021
Extensions
a(10)-a(28) from Alois P. Heinz, Dec 14 2016
Name and description corrected by Nicholas R. Beaton, May 02 2024
Comments