A279553 Number of length n inversion sequences avoiding the patterns 110, 210, 120, 201, and 010.
1, 1, 2, 5, 15, 50, 178, 663, 2552, 10071, 40528, 165682, 686151, 2872576, 12137278, 51690255, 221657999, 956265050, 4147533262, 18074429421, 79102157060, 347519074010, 1532070899412, 6775687911920, 30052744139440, 133649573395725, 595816470717728
Offset: 0
Keywords
Examples
The length 3 inversion sequences avoiding (110, 210, 120, 201, 010) are 000, 001, 002, 011, 012. The length 4 inversion sequences avoiding (110, 210, 120, 201, 010) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1489
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 5][n+1], ((12*(n-1))*(182*n^3-1659*n^2+4628*n-3756)*a(n-1) -(4*(91*n^4-1057*n^3+3812*n^2-4046*n-906))*a(n-2) +(6*(n-4))*(182*n^3-1659*n^2+4901*n-4630)*a(n-3) -(4*(n-4))*(n-5)*(91*n^2-511*n+690)*a(n-4)) /(5*n*(n-1)*(91*n^2-693*n+1292))) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 22 2017
-
Mathematica
a[n_] := a[n] = If[n < 4, {1, 1, 2, 5}[[n + 1]], ((12*(n - 1))*(182*n^3 - 1659*n^2 + 4628*n - 3756)*a[n - 1] - (4*(91*n^4 - 1057*n^3 + 3812*n^2 - 4046*n - 906))*a[n - 2] + (6*(n - 4))*(182*n^3 - 1659*n^2 + 4901*n - 4630)*a[n - 3] - (4*(n - 4))*(n - 5)*(91*n^2 - 511*n + 690)*a[n - 4]) / (5*n*(n - 1)*(91*n^2 - 693*n + 1292))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
PARI
seq(N) = my(x='x+O('x^N)); Vec(1+serreverse((-x^3+x^2+x)/(2*x^2+3*x+1))); seq(27) \\ Gheorghe Coserea, Jul 11 2018
Formula
G.f.: 1 + Series_Reversion(x*A094373(-x)). - Gheorghe Coserea, Jul 11 2018
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 4.730576939379622099763633264641101585205420756515858657461873... is the greatest real root of the equation 4 - 12*d + 4*d^2 - 24*d^3 + 5*d^4 = 0 and c = 0.3916760466183576202289779130261876915536170330427700961416097... is the positive real root of the equation -5 - 64*c^2 - 33728*c^4 + 209664*c^6 + 93184*c^8 = 0. - Vaclav Kotesovec, Jul 12 2018
D-finite with recurrence: 45*n*(n-1)*a(n) -4*(n-1)*(49*n-66)*a(n-1) +2*(-25*n^2+157*n-264)*a(n-2) +2*(-70*n^2+445*n-714)*a(n-3) -4*(n-6)*(n-13)*a(n-4) -4*(n-6)*(2*n-17)*a(n-5) +8*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Feb 21 2020
Extensions
a(10)-a(16) from Lars Blomberg, Feb 02 2017
a(17)-a(26) from Alois P. Heinz, Feb 22 2017
Comments