cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279553 Number of length n inversion sequences avoiding the patterns 110, 210, 120, 201, and 010.

Original entry on oeis.org

1, 1, 2, 5, 15, 50, 178, 663, 2552, 10071, 40528, 165682, 686151, 2872576, 12137278, 51690255, 221657999, 956265050, 4147533262, 18074429421, 79102157060, 347519074010, 1532070899412, 6775687911920, 30052744139440, 133649573395725, 595816470717728
Offset: 0

Views

Author

Megan A. Martinez, Dec 15 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 110, 120, 201, and 210.
It can be shown that this sequence also counts the length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 100, 120, 201, and 210.

Examples

			The length 3 inversion sequences avoiding (110, 210, 120, 201, 010) are 000, 001, 002, 011, 012.
The length 4 inversion sequences avoiding (110, 210, 120, 201, 010) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 5][n+1],
          ((12*(n-1))*(182*n^3-1659*n^2+4628*n-3756)*a(n-1)
          -(4*(91*n^4-1057*n^3+3812*n^2-4046*n-906))*a(n-2)
          +(6*(n-4))*(182*n^3-1659*n^2+4901*n-4630)*a(n-3)
          -(4*(n-4))*(n-5)*(91*n^2-511*n+690)*a(n-4))
           /(5*n*(n-1)*(91*n^2-693*n+1292)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a[n_] := a[n] = If[n < 4, {1, 1, 2, 5}[[n + 1]], ((12*(n - 1))*(182*n^3 - 1659*n^2 + 4628*n - 3756)*a[n - 1] - (4*(91*n^4 - 1057*n^3 + 3812*n^2 - 4046*n - 906))*a[n - 2] + (6*(n - 4))*(182*n^3 - 1659*n^2 + 4901*n - 4630)*a[n - 3] - (4*(n - 4))*(n - 5)*(91*n^2 - 511*n + 690)*a[n - 4]) / (5*n*(n - 1)*(91*n^2 - 693*n + 1292))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
  • PARI
    seq(N) = my(x='x+O('x^N)); Vec(1+serreverse((-x^3+x^2+x)/(2*x^2+3*x+1)));
    seq(27) \\ Gheorghe Coserea, Jul 11 2018

Formula

G.f.: 1 + Series_Reversion(x*A094373(-x)). - Gheorghe Coserea, Jul 11 2018
a(n) ~ c * d^n / (sqrt(Pi) * n^(3/2)), where d = 4.730576939379622099763633264641101585205420756515858657461873... is the greatest real root of the equation 4 - 12*d + 4*d^2 - 24*d^3 + 5*d^4 = 0 and c = 0.3916760466183576202289779130261876915536170330427700961416097... is the positive real root of the equation -5 - 64*c^2 - 33728*c^4 + 209664*c^6 + 93184*c^8 = 0. - Vaclav Kotesovec, Jul 12 2018
D-finite with recurrence: 45*n*(n-1)*a(n) -4*(n-1)*(49*n-66)*a(n-1) +2*(-25*n^2+157*n-264)*a(n-2) +2*(-70*n^2+445*n-714)*a(n-3) -4*(n-6)*(n-13)*a(n-4) -4*(n-6)*(2*n-17)*a(n-5) +8*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, Feb 21 2020

Extensions

a(10)-a(16) from Lars Blomberg, Feb 02 2017
a(17)-a(26) from Alois P. Heinz, Feb 22 2017