cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279560 Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102.

Original entry on oeis.org

1, 1, 2, 6, 21, 76, 277, 1016, 3756, 13998, 52554, 198568, 754316, 2878552, 11027384, 42384412, 163372325, 631290168, 2444700421, 9485463044, 36866810877, 143508889270, 559399074443, 2183269032876, 8530724152279, 33366805383326, 130633854520329, 511889287682280
Offset: 0

Views

Author

Megan A. Martinez, Jan 17 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 100, 210, 201, and 102.

Examples

			The length 4 inversion sequences avoiding (100, 210, 201, 102) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n!,
         ((6*(9*n^4-61*n^3+100*n^2+52*n-140))*a(n-1)
         -(3*(3*n-8))*(9*n^3-38*n^2+3*n+70)*a(n-2)
         +(2*(2*n-7))*(9*n^3-31*n^2-2*n+60)*a(n-3))
          / ((9*n^3-58*n^2+87*n+22)*n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 24 2017
  • Mathematica
    a[0] = 1; a[n_] := Binomial[2n-2, n-1] + Sum[(4i Binomial[2i+1, i+1]) / ((i+2)(i+3)), {k, 2, n-2}, {i, 1, k-1}]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017 *)
  • PARI
    a(n) = if (n==0, 1, binomial(2*n-2,n-1) + sum(k=2, n-2, sum(i=1,k-1, sum(u=1, i, sum(d=0, u-1, ((i-d+1)/(i+1)*binomial(i+d,d))))))); \\ Michel Marcus, Jan 18 2017

Formula

a(n) = binomial(2n-2,n-1) + Sum_{k=2..n-2} Sum_{i=1..k-1} Sum_{u=1..i} Sum_{d=0..u-1} ((i-d+1)/(i+1)*binomial(i+d,d)) for n>0, a(0)=1.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 07 2021

Extensions

More terms from Michel Marcus, Jan 18 2017