A279560 Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102.
1, 1, 2, 6, 21, 76, 277, 1016, 3756, 13998, 52554, 198568, 754316, 2878552, 11027384, 42384412, 163372325, 631290168, 2444700421, 9485463044, 36866810877, 143508889270, 559399074443, 2183269032876, 8530724152279, 33366805383326, 130633854520329, 511889287682280
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (100, 210, 201, 102) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1665
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, n!, ((6*(9*n^4-61*n^3+100*n^2+52*n-140))*a(n-1) -(3*(3*n-8))*(9*n^3-38*n^2+3*n+70)*a(n-2) +(2*(2*n-7))*(9*n^3-31*n^2-2*n+60)*a(n-3)) / ((9*n^3-58*n^2+87*n+22)*n)) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 24 2017
-
Mathematica
a[0] = 1; a[n_] := Binomial[2n-2, n-1] + Sum[(4i Binomial[2i+1, i+1]) / ((i+2)(i+3)), {k, 2, n-2}, {i, 1, k-1}]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017 *)
-
PARI
a(n) = if (n==0, 1, binomial(2*n-2,n-1) + sum(k=2, n-2, sum(i=1,k-1, sum(u=1, i, sum(d=0, u-1, ((i-d+1)/(i+1)*binomial(i+d,d))))))); \\ Michel Marcus, Jan 18 2017
Formula
a(n) = binomial(2n-2,n-1) + Sum_{k=2..n-2} Sum_{i=1..k-1} Sum_{u=1..i} Sum_{d=0..u-1} ((i-d+1)/(i+1)*binomial(i+d,d)) for n>0, a(0)=1.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 07 2021
Extensions
More terms from Michel Marcus, Jan 18 2017
Comments