cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279561 Number of length n inversion sequences avoiding the patterns 101, 102, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 287, 1079, 4082, 15522, 59280, 227240, 873886, 3370030, 13027730, 50469890, 195892565, 761615285, 2965576715, 11563073315, 45141073925, 176423482325, 690215089745, 2702831489825, 10593202603775, 41550902139551, 163099562175851
Offset: 0

Views

Author

Megan A. Martinez, Jan 17 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k. This is the same as the set of length n inversion sequences avoiding 101, 102, 201, and 210.
It is conjectured that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 021 and 120.

Examples

			The length 4 inversion sequences avoiding (101, 102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (021, 120) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2,
          ((5*n^2-12*n+6)*a(n-1)-(4*n^2-10*n+6)*a(n-2))/((n-2)*n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    a[n_] := 1 + Sum[Binomial[2i, i-1], {i, 0, n-1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017 *)

Formula

a(n) = 1 + Sum_{i=1..n-1} binomial(2i, i-1).
a(n) = 1 + A057552(n-2).
G.f.: (1-4*x+sqrt(-16*x^3+20*x^2-8*x+1))/(2*(x-1)*(4*x-1)).
D-finite with recurrence: n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 21 2020