A279561 Number of length n inversion sequences avoiding the patterns 101, 102, 201, and 210.
1, 1, 2, 6, 21, 77, 287, 1079, 4082, 15522, 59280, 227240, 873886, 3370030, 13027730, 50469890, 195892565, 761615285, 2965576715, 11563073315, 45141073925, 176423482325, 690215089745, 2702831489825, 10593202603775, 41550902139551, 163099562175851
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (101, 102, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123. The length 4 inversion sequences avoiding (021, 120) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1664
- Shane Chern, On 0012-avoiding inversion sequences and a Conjecture of Lin and Ma, arXiv:2006.04318 [math.CO], 2020.
- A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, 1+n*(n-1)/2, ((5*n^2-12*n+6)*a(n-1)-(4*n^2-10*n+6)*a(n-2))/((n-2)*n)) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 18 2017
-
Mathematica
a[n_] := 1 + Sum[Binomial[2i, i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 28 2017 *)
Formula
a(n) = 1 + Sum_{i=1..n-1} binomial(2i, i-1).
a(n) = 1 + A057552(n-2).
G.f.: (1-4*x+sqrt(-16*x^3+20*x^2-8*x+1))/(2*(x-1)*(4*x-1)).
D-finite with recurrence: n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 21 2020
Comments