A279570
Number of length n inversion sequences avoiding the patterns 110 and 120.
Original entry on oeis.org
1, 1, 2, 6, 22, 92, 423, 2091, 10950, 60120, 343453, 2029809, 12354661, 77168197, 493189283, 3217459119, 21382723456, 144518555231, 991885282987, 6904454991721, 48691257834999, 347542736059492, 2508603139285095, 18297609829743478, 134772911886028731
Offset: 0
The length 4 inversion sequences avoiding (110,120) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
Cf.
A000108,
A057552,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279571,
A279572,
A279573.
A279559
Number of length n inversion sequences avoiding the patterns 010 and 120.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 201, 845, 3801, 18089, 90316, 470010, 2536077, 14127741, 80966690, 475979359, 2863157581, 17585971037, 110095460224, 701418693025, 4541497543092, 29847982448766, 198913925919741, 1342890255133042, 9176456969273844, 63422002415068463
Offset: 0
The length 4 inversion sequences avoiding (010, 120) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
- Benjamin Testart, Table of n, a(n) for n = 0..400
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Benjamin Testart, Inversion sequences avoiding the pattern 010, arXiv:2212.07222 [math.CO], 2022.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Cf.
A000108,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
A279555
Number of length n inversion sequences avoiding the patterns 110, 210, 120, and 010.
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 189, 746, 3091, 13311, 59146, 269701, 1256820, 5966001, 28773252, 140695923, 696332678, 3483193924, 17589239130, 89575160517, 459648885327, 2374883298183, 12346911196912, 64555427595970, 339276669116222, 1791578092326881, 9501960180835998
Offset: 0
The length 3 inversion sequences avoiding (010, 110, 120, 210) are 000, 001, 002, 011, 012.
The length 4 inversion sequences avoiding (010, 110, 120, 210) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
- Jay Pantone, Table of n, a(n) for n = 0..500
- Andrei Asinowski and Michaela A. Polley, Patterns in rectangulations. Part I: T-like patterns, inversion sequence classes I(010, 101, 120, 201) and I(011, 201), and rushed Dyck paths, arXiv:2501.11781 [math.CO], 2025.
- David Callan and Toufik Mansour, Inversion sequences avoiding quadruple length-3 patterns, Integers, 23 (2023), Article A78.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Jay Pantone, The enumeration of inversion sequences avoiding the patterns 201 and 210, Enumerative Combinatorics and Applications, 4:4 (2024), Article S2R25.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Cf.
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
A279564
Number of length n inversion sequences avoiding the patterns 000 and 100.
Original entry on oeis.org
1, 1, 2, 5, 16, 60, 260, 1267, 6850, 40572, 260812, 1805646, 13377274, 105487540, 881338060, 7770957903, 72060991394, 700653026744, 7123871583656, 75561097962918, 834285471737784, 9570207406738352, 113855103776348136, 1402523725268921870, 17863056512845724036, 234910502414771617316, 3185732802058088068444, 44501675392317774477088
Offset: 0
- Benjamin Testart, Table of n, a(n) for n = 0..540
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Cf.
A000108,
A057552,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
-
b:= proc(n, i, m, s) option remember; `if`(n=0, 1, add(
`if`(j in s, 0, b(n-1, i+1, max(m, j),
`if`(j<=m, s union {j}, s))), j=1..i))
end:
a:= n-> b(n, 1, 0, {}):
seq(a(n), n=0..15); # Alois P. Heinz, Feb 22 2017
-
b[n_, i_, m_, s_List] := b[n, i, m, s] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, b[n-1, i+1, Max[m, j], If[j <= m, s ~Union~ {j}, s]]], {j, 1, i}] ]; a[n_] := b[n, 1, 0, {}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
A279566
Number of length n inversion sequences avoiding the patterns 102 and 201.
Original entry on oeis.org
1, 1, 2, 6, 22, 87, 354, 1465, 6154, 26223, 113236, 494870, 2185700, 9743281, 43784838, 198156234, 902374498, 4131895035, 19012201080, 87864535600, 407664831856, 1898184887679, 8867042353912, 41543375724751, 195164372948152, 919138464708907, 4338701289961694, 20524046955770940
Offset: 0
The length 4 inversion sequences avoiding (102, 201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123
- Benjamin Testart, Table of n, a(n) for n = 0..1400
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Chunyan Yan, Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Cf.
A000108,
A057552,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
A279557
Number of length n inversion sequences avoiding the patterns 110, 120, and 021.
Original entry on oeis.org
1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879, 35073, 125513, 452389, 1641029, 5986994, 21954974, 80884424, 299233544, 1111219334, 4140813374, 15478839554, 58028869154, 218123355524, 821908275548, 3104046382352, 11747506651600, 44546351423300, 169227201341652
Offset: 0
The length 4 inversion sequences avoiding (110, 120, 021) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0122, 0123.
- Alois P. Heinz, Table of n, a(n) for n = 0..1668
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
Cf.
A000108,
A114277,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
-
a:= proc(n) option remember; `if`(n<3, n!,
((5*n^2-6*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n^2-4))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2017
-
a[n_] := 1 + Sum[(k - t - 1) (k - t)/(n - t + 1)* Binomial[2 n - k - t + 1, n - k + 1], {t, n - 1}, {k, t + 2, n + 1}]; Array[a, 28, 0] (* Robert G. Wilson v, Feb 25 2017 *)
A279565
Number of length n inversion sequences avoiding the patterns 100, 110, 120, 201, and 210.
Original entry on oeis.org
1, 1, 2, 6, 21, 81, 332, 1420, 6266, 28318, 130412, 609808, 2887582, 13818590, 66726628, 324713196, 1590853485, 7840315329, 38843186366, 193342353214, 966409013021, 4848846341569, 24412146213116, 123290812268404, 624448756434476, 3171046361310556
Offset: 0
The length 4 inversion sequences avoiding (100, 110, 120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
Cf.
A000108,
A057552,
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
-
I:=[6, 21, 81]; [1,1,2] cat [n le 3 select I[n] else ( (n+1)*(17*n+6)*Self(n-1) +(49*n^2+11*n+22)*Self(n-2) +3*(3*n-1)*(3*n-2)*Self(n-3) )/(5*(n+2)*(n+1)) : n in [1..30]]; // G. C. Greubel, Mar 29 2019
-
a:= proc(n) option remember; `if`(n<3, n!,
((n-1)*(17*n-28)*a(n-1) +(49*n^2-185*n+196)*a(n-2)
+(3*(3*n-7))*(3*n-8)*a(n-3)) / (5*n*(n-1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 22 2017
-
a[n_] := a[n] = If[n < 3, n!, (((n - 1)*(17*n - 28)*a[n-1] + (49*n^2 - 185*n + 196)*a[n-2] + (3*(3*n - 7))*(3*n - 8)*a[n-3]) / (5*n*(n - 1)))]; Array[a, 30, 0] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
Join[{1}, Table[(1/n)*Sum[m*Sum[Binomial[k, n-m-k]*Binomial[n+k-1, k], {k, 0, n-m}], {m, 1, n}], {n, 1, 30}]] (* G. C. Greubel, Mar 29 2019 *)
-
a(n):=if n=0 then 1 else sum(m*sum(binomial(k,n-m-k)*binomial(n+k-1,k),k,0,n-m),m,1,n)/n; /* Vladimir Kruchinin, Mar 26 2019 */
-
my(x='x+O('x^30)); Vec(round(3/(4-4*sin(asin((27*x+11)/16)/3)))) \\ G. C. Greubel, Mar 29 2019
-
[1] +[(1/n)*(sum(sum(k*binomial(j,n-k-j)*binomial(n+j-1,j) for j in (0..n-k)) for k in (1..n))) for n in (1..30)] # G. C. Greubel, Mar 29 2019
A279552
Number of length n inversion sequences avoiding the patterns 000 and 010.
Original entry on oeis.org
1, 1, 2, 4, 10, 29, 95, 345, 1376, 5966, 27886, 139608, 744552, 4210191, 25140790, 157981820, 1041480482, 7183374125, 51711299169, 387683162541, 3020997261596, 24424884853963, 204559337781097, 1772011400733378, 15855597322378302, 146360032952969570
Offset: 0
For n=3, the inversion sequences are 001, 002, 011, 012.
For n=4, the inversion sequences are 0011, 0012, 0013, 0021, 0022, 0023, 0112, 0113, 0122, 0123.
- Benjamin Testart, Table of n, a(n) for n = 0..200
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Benjamin Testart, Inversion sequences avoiding the pattern 010, arXiv:2212.07222 [math.CO], 2022.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
Cf.
A263777,
A263778,
A263779,
A263780,
A279551,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
A279551
Number of length n inversion sequences avoiding the patterns 000, 010, 110, and 120.
Original entry on oeis.org
1, 1, 2, 4, 10, 27, 79, 247, 816, 2822, 10158, 37875, 145695, 576288, 2337412, 9698820, 41089107, 177424188, 779699793, 3482575169, 15791709187, 72621800171, 338388714955, 1596314968112, 7618218238583, 36756086159343, 179176803145900, 882002961543492
Offset: 0
For n=3, the inversion sequences are 001, 002, 011, 012.
For n=4, the inversion sequences are 0011, 0012, 0013, 0021, 0022, 0023, 0112, 0113, 0122, 0123.
Cf.
A263777,
A263778,
A263779,
A263780,
A279552,
A279553,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
Typo in comment corrected and a(10)-a(27) added by
Alois P. Heinz, Feb 22 2017
A279553
Number of length n inversion sequences avoiding the patterns 110, 210, 120, 201, and 010.
Original entry on oeis.org
1, 1, 2, 5, 15, 50, 178, 663, 2552, 10071, 40528, 165682, 686151, 2872576, 12137278, 51690255, 221657999, 956265050, 4147533262, 18074429421, 79102157060, 347519074010, 1532070899412, 6775687911920, 30052744139440, 133649573395725, 595816470717728
Offset: 0
The length 3 inversion sequences avoiding (110, 210, 120, 201, 010) are 000, 001, 002, 011, 012.
The length 4 inversion sequences avoiding (110, 210, 120, 201, 010) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
Cf.
A263777,
A263778,
A263779,
A263780,
A279551,
A279552,
A279554,
A279555,
A279556,
A279557,
A279558,
A279559,
A279560,
A279561,
A279562,
A279563,
A279564,
A279565,
A279566,
A279567,
A279568,
A279569,
A279570,
A279571,
A279572,
A279573.
-
a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 5][n+1],
((12*(n-1))*(182*n^3-1659*n^2+4628*n-3756)*a(n-1)
-(4*(91*n^4-1057*n^3+3812*n^2-4046*n-906))*a(n-2)
+(6*(n-4))*(182*n^3-1659*n^2+4901*n-4630)*a(n-3)
-(4*(n-4))*(n-5)*(91*n^2-511*n+690)*a(n-4))
/(5*n*(n-1)*(91*n^2-693*n+1292)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 22 2017
-
a[n_] := a[n] = If[n < 4, {1, 1, 2, 5}[[n + 1]], ((12*(n - 1))*(182*n^3 - 1659*n^2 + 4628*n - 3756)*a[n - 1] - (4*(91*n^4 - 1057*n^3 + 3812*n^2 - 4046*n - 906))*a[n - 2] + (6*(n - 4))*(182*n^3 - 1659*n^2 + 4901*n - 4630)*a[n - 3] - (4*(n - 4))*(n - 5)*(91*n^2 - 511*n + 690)*a[n - 4]) / (5*n*(n - 1)*(91*n^2 - 693*n + 1292))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
seq(N) = my(x='x+O('x^N)); Vec(1+serreverse((-x^3+x^2+x)/(2*x^2+3*x+1)));
seq(27) \\ Gheorghe Coserea, Jul 11 2018
Showing 1-10 of 23 results.
Comments