cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279622 Numbers with a prime factor greater than 5.

Original entry on oeis.org

7, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2016

Keywords

Crossrefs

Complement of A051037.
Cf. A059485.

Programs

  • Magma
    [n: n in [1..100] | not PrimeDivisors(n) subset [2, 3, 5]]; // Vincenzo Librandi, Jan 29 2017
    
  • Mathematica
    fQ[n_]:=!PowerMod[30, n, n] == 0; Select[Range[100], fQ]
    Select[Range[100],Max[FactorInteger[#][[;;,1]]]>5&] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    isok(n) = vecmax(factor(n)[,1]) > 5; \\ Michel Marcus, Dec 21 2016
    
  • PARI
    is(n)=if(n<7, return(0)); n>>=valuation(n,2); n/=3^valuation(n,2) * 5^valuation(n,5); n>1 \\ Charles R Greathouse IV, Dec 22 2016
    
  • Python
    from sympy import integer_log
    def A279622(n):
        def f(x):
            c = n
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(y:=x//5**i,3)[0]+1):
                    c += (y//3**j).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024

Formula

a(n) = n + O(log^3 n). - Charles R Greathouse IV, Dec 22 2016