cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A279636 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Examples

			Square array A(n,k) begins:
:   1,    1,    1,     1,      1,       1,        1, ...
:   1,    1,    1,     1,      1,       1,        1, ...
:   2,    3,    5,     9,     17,      33,       65, ...
:   5,   10,   22,    52,    130,     340,      922, ...
:  15,   41,  125,   413,   1445,    5261,    19685, ...
:  52,  196,  836,  3916,  19676,  104116,   572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
		

Crossrefs

Rows n=0+1,2 give: A000012, A000051.
Main diagonal gives A279644.
Cf. A145460.

Programs

  • Maple
    egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
    A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).

A306325 Expansion of e.g.f. log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)).

Original entry on oeis.org

0, 1, 15, 35, -650, -5251, 83376, 1623439, -19261584, -836109351, 5365104400, 636771444011, 561938325312, -661384866976523, -7128491581221360, 879709224738485415, 21742632225425026816, -1413667730904479933647, -64871991410092201623024, 2556051301724027073500035, 212244727356899863738042560
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2019

Keywords

Crossrefs

Programs

  • Maple
    a:=series(log(1 + exp(x)*x*(1 + 7*x + 6*x^2 + x^3)),x=0,21): seq(n!*coeff(a, x, n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Log[1 + Exp[x] x (1 + 7 x + 6 x^2 + x^3)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = n^4 - Sum[Binomial[n, k] (n - k)^4 k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: log(1 + Sum_{k>=1} k^4*x^k/k!).
a(0) = 0; a(n) = n^4 - (1/n)*Sum_{k=1..n-1} binomial(n,k)*(n - k)^4*k*a(k).
Showing 1-2 of 2 results.