cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A279634 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 3/2.

Original entry on oeis.org

1, -3, 5, -9, 18, -36, 72, -144, 288, -576, 1152, -2304, 4608, -9216, 18432, -36864, 73728, -147456, 294912, -589824, 1179648, -2359296, 4718592, -9437184, 18874368, -37748736, 75497472, -150994944, 301989888, -603979776, 1207959552, -2415919104, 4831838208
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Comments

After first 3 terms, agrees with A005010 except for signs; in particular 9 divides a(n) for n >= 3.
Suppose r = c/d is a rational number and (a(n)) is the coefficient series for 1/([r] + [2r]x + [3r]x^2 + ...). Let (s(k)) be the increasing sequence of indices n(k) for which a(n(k)) > = 0. In the table below, "yes" indicates that a check of the first 1000 terms indicates that (n(k)) is (eventually) periodic. Column 1 gives selected values of r, and column 2 gives the corresponding coefficient series.
3/2 A279634 yes
4/3 A279675 no
5/3 A279676 no
5/4 A279677 yes
7/4 A279678 yes
6/5 A279778 no
7/5 A279779 no
8/5 A279780 yes
9/5 A279781 no

Crossrefs

Cf. A005010.

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(3/2)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]
    LinearRecurrence[{-2},{1,-3,5,-9},40] (* Harvey P. Dale, Jul 28 2023 *)

Formula

G.f.: 1/(1 + 3x + 4x^2 + 6x^3 + ...).
G.f.: (1 - x) (1 - x^2)/(1 + 2x).
E.g.f.: - (1/8) - (3/4)*x + (1/4)*x^2 + (9/8)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 16 2021

A279780 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 8/5.

Original entry on oeis.org

1, -3, 5, -9, 17, -30, 52, -90, 154, -262, 446, -758, 1286, -2182, 3702, -6278, 10646, -18054, 30614, -51910, 88022, -149254, 253078, -429126, 727638, -1233798, 2092054, -3547334, 6014934, -10199046, 17293718, -29323590, 49721686, -84309126, 142956310
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Comments

If n > 4, then a(n) is even.

Crossrefs

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(8/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]

Formula

G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 8/5.
G.f.: (1 - x) (1 - x^5)/(1 + 2 x + x^2 + 2 x^3 + 2 x^4).

A279778 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.

Original entry on oeis.org

1, -2, 1, 0, -1, 3, -3, 1, 1, -5, 9, -7, 1, 7, -19, 25, -15, -5, 33, -63, 65, -25, -43, 129, -191, 155, -7, -215, 449, -537, 317, 201, -879, 1435, -1391, 433, 1281, -3193, 4261, -3215, -415, 5755, -10647, 11737, -6015, -6585, 22157, -33031, 29489, -5445
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(6/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]
    LinearRecurrence[{-1,-1,-1,-2},{1,-2,0,-1,3,-3},50] (* Harvey P. Dale, Mar 11 2024 *)

Formula

G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.
G.f.: (1 - x) (1 - x^5)/(1 + x + x^2 + x^3 + 2 x^4).

A279779 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/5.

Original entry on oeis.org

1, -2, 0, 3, -3, 0, 4, -7, 5, 5, -16, 15, 2, -26, 39, -19, -37, 88, -73, -28, 160, -207, 61, 249, -484, 339, 258, -950, 1063, -99, -1593, 2628, -1469, -1996, 5492, -5287, -763, 9837, -14008, 5671, 14034, -31042, 25319, 11389, -59053, 73040, -16961, -92844
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Crossrefs

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(7/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]

Formula

G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/5.
G.f.: (1 - x) (1 - x^5)/(1 + x + 2 x^2 + x^3 + 2 x^4).
Showing 1-4 of 4 results.