A279784 Twice partitioned numbers where the latter partitions are constant.
1, 1, 3, 5, 12, 18, 40, 60, 121, 186, 344, 524, 955, 1432, 2484, 3756, 6352, 9493, 15750, 23414, 38128, 56513, 90406, 133312, 211194, 309657, 484214, 708267, 1097159, 1597290, 2454245, 3560444, 5430091, 7854174, 11894335, 17151394, 25838413, 37145198, 55648059
Offset: 0
Keywords
Examples
The a(4)=12 twice-partitions are: ((4)), ((3)(1)), ((2)(2)), ((22)), ((2)(1)(1)), ((2)(11)), ((11)(2)), ((1)(1)(1)(1)), ((11)(1)(1)), ((11)(11)), ((111)(1)), ((1111)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, numtheory[tau](i)*b(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Dec 20 2016
-
Mathematica
nn=20;CoefficientList[Series[Product[1/(1-DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]
Formula
G.f.: exp(Sum_{k>=1} Sum_{j>=1} d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 2^(n/2), where
c = 203.986136154799274492709451797084688042886818134781591... if n is even and
c = 201.491703180375661735217350021245093454724452720559762... if n is odd.
In closed form, a(n) ~ ((2 + sqrt(2)) * Product_{k>=3} (1/(1 - tau(k) / 2^(k/2))) + (-1)^n * (2 - sqrt(2)) * Product_{k>=3} (1/(1 - (-1)^k * tau(k) / 2^(k/2)))) * 2^(n/2 - 1), where tau() is A000005. (End)
Comments