A279786 Twice-partitioned numbers where the first partition is strict and the latter partitions are constant.
1, 1, 2, 4, 5, 9, 16, 22, 28, 49, 69, 94, 138, 187, 257, 374, 479, 639, 886, 1146, 1577, 2103, 2676, 3534, 4620, 5910, 7542, 9816, 12650, 15986, 20538, 25740, 32632, 41442, 51383, 64771, 81281, 100729, 125041, 155557, 192641, 236810, 293593, 359880, 441276
Offset: 0
Keywords
Examples
The a(5)=9 twice-partitions are: ((5)), ((4)(1)), ((3)(2)), ((3)(11)), ((22)(1)), ((111)(2)), ((111)(11)), ((1111)(1)), ((11111)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8000
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+ `if`(i>n, 0, numtheory[tau](i)*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
Mathematica
nn=20;CoefficientList[Series[Product[(1+DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]
Formula
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018