cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279786 Twice-partitioned numbers where the first partition is strict and the latter partitions are constant.

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 16, 22, 28, 49, 69, 94, 138, 187, 257, 374, 479, 639, 886, 1146, 1577, 2103, 2676, 3534, 4620, 5910, 7542, 9816, 12650, 15986, 20538, 25740, 32632, 41442, 51383, 64771, 81281, 100729, 125041, 155557, 192641, 236810, 293593, 359880, 441276
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(5)=9 twice-partitions are:
((5)), ((4)(1)), ((3)(2)), ((3)(11)), ((22)(1)),
((111)(2)), ((111)(11)), ((1111)(1)), ((11111)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
          `if`(i>n, 0, numtheory[tau](i)*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    nn=20;CoefficientList[Series[Product[(1+DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - Ilya Gutkovskiy, Jul 17 2018