A279787 Twice-partitioned numbers where the first partition is constant.
1, 1, 3, 4, 10, 8, 29, 16, 64, 58, 124, 57, 469, 102, 489, 763, 1597, 298, 3858, 491, 8942, 6355, 6187, 1256, 59076, 18766, 20830, 49694, 167078, 4566, 481186, 6843, 752128, 362907, 231592, 1597802, 5951007, 21638, 790404, 2655810, 25274798, 44584, 40898731
Offset: 0
Keywords
Examples
The a(4)=10 twice-partitions are: ((4)), ((31)), ((22)), ((211)), ((1111)), ((2)(2)), ((2)(11)), ((11)(2)), ((11)(11)), ((1)(1)(1)(1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5723
- Gus Wiseman, Illustration of the first 9 terms of A279787
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
with(numtheory): with(combinat): a:= proc(n) option remember; `if`(n=0, 1, add(numbpart(n/d)^d, d=divisors(n))) end: seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
Mathematica
nn=20;Table[DivisorSum[n,Power[PartitionsP[#],n/#]&],{n,nn}]
-
PARI
a(n)=if(n==0, 1, sumdiv(n, d, numbpart(n/d)^d)) \\ Andrew Howroyd, Aug 26 2018
Formula
a(n) = Sum_{d|n} A000041(n/d)^d for n > 0. - Andrew Howroyd, Aug 26 2018