A279788 Twice partitioned numbers where the first partition is constant and the latter partitions are strict.
1, 1, 2, 3, 4, 4, 10, 6, 12, 17, 21, 13, 57, 19, 49, 87, 86, 39, 240, 55, 279, 330, 235, 105, 1141, 386, 491, 1217, 1461, 257, 4804, 341, 2968, 4225, 1958, 5898, 18961, 761, 3782, 15007, 30572, 1261, 66245, 1611, 32523, 106951, 13122, 2591, 283013, 81390, 182873
Offset: 0
Keywords
Examples
The a(6)=10 twice-partitions are: ((6)), ((51)), ((42)), ((3)(3)), ((3)(21)), ((21)(3)), ((321)), ((2)(2)(2)), ((21)(21)), ((1)(1)(1)(1)(1)(1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= proc(n) option remember; `if`(n=0, 1, add(b(n/d)^d, d=divisors(n))) end: seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
Mathematica
Table[DivisorSum[n,PartitionsQ[n/#]^#&],{n,20}]