cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A047966 a(n) = Sum_{ d divides n } q(d), where q(d) = A000009 = number of partitions of d into distinct parts.

Original entry on oeis.org

1, 2, 3, 4, 4, 8, 6, 10, 11, 15, 13, 25, 19, 29, 33, 42, 39, 62, 55, 81, 84, 103, 105, 153, 146, 185, 203, 253, 257, 344, 341, 432, 463, 552, 594, 747, 761, 920, 1003, 1200, 1261, 1537, 1611, 1921, 2089, 2410, 2591, 3095, 3270, 3815, 4138, 4769, 5121, 5972, 6394, 7367, 7974, 9066, 9793, 11305, 12077, 13736, 14940
Offset: 1

Views

Author

Keywords

Comments

Number of partitions of n such that every part occurs with the same multiplicity. - Vladeta Jovovic, Oct 22 2004
Christopher and Christober call such partitions uniform. - Gus Wiseman, Apr 16 2018
Equals inverse Mobius transform (A051731) * A000009, where the latter begins (1, 1, 2, 2, 3, 4, 5, 6, 8, ...). - Gary W. Adamson, Jun 08 2009

Examples

			The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - _Gus Wiseman_, Apr 16 2018
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> add(b(d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 11 2016
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)
    Table[DivisorSum[n,PartitionsQ],{n,20}] (* Gus Wiseman, Apr 16 2018 *)
  • PARI
    N = 66; q='q+O('q^N);
    D(q)=eta(q^2)/eta(q); \\ A000009
    Vec( sum(e=1,N,D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014

Formula

G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025

A381719 Numbers whose prime indices cannot be partitioned into sets with a common sum.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

Differs from A059404, A323055, A376250 in lacking 150.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be factored into squarefree numbers with a common sum of prime indices (A056239).

Examples

			The prime indices of 150 are {1,2,3,3}, and {{3},{3},{1,2}} is a partition into sets with a common sum, so 150 is not in the sequence.
		

Crossrefs

Twice-partitions of this type (sets with a common sum) are counted by A279788.
These multiset partitions (sets with a common sum) are ranked by A326534 /\ A302478.
For distinct block-sums we have A381806, counted by A381990 (complement A381992).
For constant blocks we have A381871 (zeros of A381995), counted by A381993.
Partitions of this type are counted by A381994.
These are the zeros of A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
The complement counted by A383308.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A381633 counts set systems with distinct sums, see A381634, A293243.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Select[Range[100],Select[mps[prix[#]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]=={}&]

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A296132 Number of twice-factorizations of n where the first factorization is constant and the latter factorizations are strict, i.e., type (P,R,Q).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 9, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 10, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) strict factorizations of d.

Examples

			The a(36) = 9 twice-factorizations are (2*3)*(2*3), (2*3)*(6), (6)*(2*3), (6)*(6), (2*3*6), (2*18), (3*12), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[sfs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]

A381994 Number of integer partitions of n that cannot be partitioned into sets with equal sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 12, 17, 27, 43, 46, 82, 103, 133, 181, 258, 295
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2025

Keywords

Examples

			For y = (3,3,1,1) we have {{1,3},{1,3}}, so y is not counted under a(8).
For y = (3,2,2,1), although we have {{1,3},{2,2}}, the block {2,2} is not a set, so y is counted under a(8).
The a(4) = 1 through a(8) = 12 partitions:
  (2,1,1)  (2,2,1)    (4,1,1)      (3,2,2)        (3,3,2)
           (3,1,1)    (3,1,1,1)    (3,3,1)        (4,2,2)
           (2,1,1,1)  (2,1,1,1,1)  (5,1,1)        (6,1,1)
                                   (2,2,2,1)      (3,2,2,1)
                                   (3,2,1,1)      (4,2,1,1)
                                   (4,1,1,1)      (5,1,1,1)
                                   (2,2,1,1,1)    (2,2,2,1,1)
                                   (3,1,1,1,1)    (3,2,1,1,1)
                                   (2,1,1,1,1,1)  (4,1,1,1,1)
                                                  (2,2,1,1,1,1)
                                                  (3,1,1,1,1,1)
                                                  (2,1,1,1,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279788.
Interchanging "constant" with "strict" gives A381717, see A381635, A381636, A381991.
Normal multiset partitions of this type are counted by A381718, see A279785.
These partitions are ranked by A381719, zeros of A382080.
For distinct instead of equal block-sums we have A381990, ranked by A381806.
For constant instead of strict blocks we have A381993.
A000041 counts integer partitions, strict A000009.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A381633 counts set systems with distinct sums, see A381634, A293243.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#], And@@UnsameQ@@@#&&SameQ@@Total/@#&]]==0&]],{n,0,10}]

A382304 MM-numbers of multiset partitions into sets with a common sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 143, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

Also products of prime numbers of squarefree index with a common sum of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Set partitions of this type are counted by A035470.
Twice-partitions of this type are counted by A279788.
For just strict blocks we have A302478.
For just a common sum we have A326534, distinct sums A326535.
Factorizations of this type are counted by A382080.
For distinct instead of equal sums we have A382201.
For constant instead of strict blocks we have A382215.
Normal multiset partitions of this type are counted by A382429.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A058891 counts set-systems, covering A003465, connected A323818.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@UnsameQ@@@prix/@prix[#]&]

Formula

Equals A302478 /\ A326534.

A302497 Powers of primes of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317, 331
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is not in the sequence because 49 = prime(4)^2 but 4 is not squarefree.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    is(n) = if(n==1, return(1), my(x=isprimepower(n)); if(x > 0, if(issquarefree(primepi(ceil(n^(1/x)))), return(1)))); 0 \\ Felix Fröhlich, Apr 10 2018

A301768 Number of ways to choose a strict rooted partition of each part in a constant rooted partition of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 11, 8, 14, 11, 32, 16, 36, 32, 70, 33, 104, 47, 168, 130, 178, 90, 521, 155, 369, 383, 902, 223, 1562, 297, 1952, 1392, 1474, 1665, 6297, 669, 2878, 4241, 12401, 1114, 17474, 1427, 19436, 20754, 9971, 2305, 80110, 19295, 51942, 36428
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(9) = 11 rooted twice-partitions:
(7), (61), (52), (43), (421),
(3)(3), (3)(21), (21)(3), (21)(21),
(1)(1)(1)(1),
()()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsQ[n/d-1]^d,{d,Divisors[n]}],{n,50}]

A383308 Number of integer partitions of n that can be partitioned into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 10, 13, 15, 13, 31
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

Any strict partition can be partitioned into a single set, so we have a lower bound a(n) >= A000009(n).

Examples

			The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9).
The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)         (9)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)        (54)
             (111)  (31)    (41)     (42)      (52)       (53)        (63)
                    (1111)  (11111)  (51)      (61)       (62)        (72)
                                     (222)     (421)      (71)        (81)
                                     (321)     (1111111)  (431)       (333)
                                     (2211)               (521)       (432)
                                     (111111)             (2222)      (531)
                                                          (3311)      (621)
                                                          (11111111)  (3321)
                                                                      (32211)
                                                                      (222111)
                                                                      (111111111)
		

Crossrefs

Twice-partitions of this type (into sets with a common sum) are counted by A279788.
Multiset partitions of this type are ranked by A326534 /\ A302478.
For distinct instead of equal sums we have A381992, see also A382077.
The complement is counted by A381994, ranks A381719.
Partitions of prime indices of this type are counted by A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
For constant instead of strict blocks we have A383093, ranks A383014.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}]
Showing 1-10 of 10 results.