A338991 a(n) = Sum_{k=1..floor(n/2)} (n-2*k) * floor((n-k)/k).
0, 0, 2, 6, 13, 24, 37, 56, 78, 106, 132, 178, 212, 258, 312, 376, 425, 508, 565, 662, 749, 836, 909, 1058, 1156, 1264, 1384, 1536, 1636, 1836, 1946, 2126, 2282, 2434, 2606, 2880, 3019, 3194, 3385, 3676, 3833, 4138, 4305, 4572, 4863, 5086, 5271, 5692, 5924, 6240
Offset: 1
Programs
-
Mathematica
Table[Sum[(n - 2 k)*Floor[(n - k)/k], {k, Floor[n/2]}], {n, 60}]
-
Python
from math import isqrt def A338991(n): return ((s:=isqrt(n))+1)*(n*(1-s)+s**2)-sum((q:=n//k)*((k-n<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 23 2023
Formula
From Vaclav Kotesovec, Jun 24 2021: (Start)
a(n) ~ (log(n) + 2*gamma - Pi^2/6 - 1)*n^2, where gamma is the Euler-Mascheroni constant A001620. (End)
Comments