A280076 Numbers n such that Sum_{d|n} tau(d) = Product_{d|n} tau(d).
1, 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1
Keywords
Examples
9 is a term because Sum_{d|9} tau(d) = 1+2+3 = Product_{d|9} tau(d) = 1*2*3 = 6.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..1000000] | &*[NumberOfDivisors(d): d in Divisors(n)] eq &+[NumberOfDivisors(d): d in Divisors(n)]]
-
Mathematica
Select[Range@ 37500, Total@ # == Times @@ # &@ Map[DivisorSigma[0, #] &, Divisors@ #] &] (* Michael De Vlieger, Dec 25 2016 *)
-
PARI
isok(n) = my(d = divisors(n), nd = apply(numdiv, d)); vecsum(nd) == prod(k=1, #nd, nd[k]); \\ Michel Marcus, Jun 26 2017
Formula
Apparently, a(n) = A331294(n + 3) if n > 5. - Lorenzo Sauras Altuzarra, Sep 18 2022
Comments