cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280076 Numbers n such that Sum_{d|n} tau(d) = Product_{d|n} tau(d).

Original entry on oeis.org

1, 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

Union of 1 and A001248 (squares of primes).
Numbers n such that A007425(n) = A211776(n).
Numbers n such that A007425(n) = Sum_{d|n} tau(d) = A211776(n) = Product_{d|n} tau(d) = 6.
Also squares of noncomposite numbers (A008578).
Subsequence of A350343. - Lorenzo Sauras Altuzarra, Sep 18 2022

Examples

			9 is a term because Sum_{d|9} tau(d) = 1+2+3 = Product_{d|9} tau(d) = 1*2*3 = 6.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | &*[NumberOfDivisors(d): d in Divisors(n)]  eq &+[NumberOfDivisors(d): d in Divisors(n)]]
    
  • Mathematica
    Select[Range@ 37500, Total@ # == Times @@ # &@ Map[DivisorSigma[0, #] &, Divisors@ #] &] (* Michael De Vlieger, Dec 25 2016 *)
  • PARI
    isok(n) = my(d = divisors(n), nd = apply(numdiv, d)); vecsum(nd) == prod(k=1, #nd, nd[k]); \\ Michel Marcus, Jun 26 2017

Formula

A007425(a(n)) = A211776(a(n)) = 6.
Apparently, a(n) = A331294(n + 3) if n > 5. - Lorenzo Sauras Altuzarra, Sep 18 2022