A280181 Indices of centered 9-gonal numbers (A060544) that are also squares (A000290).
1, 17, 561, 19041, 646817, 21972721, 746425681, 25356500417, 861374588481, 29261379507921, 994025528680817, 33767606595639841, 1147104598723073761, 38967788749988868017, 1323757712900898438801, 44968794449880558051201, 1527615253583038075302017
Offset: 1
Examples
17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square. From _Jon E. Schoenfield_, Sep 06 2019: (Start) The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence: . | A002315(n-1)^2 | 2*A001653(n)^2 | n | = 3*a(n) - 2 | = 3*a(n) - 1 | 3*a(n) --+------------------+-------------------+------------------- 1 | 1^2 = 1 | 1^2*2 = 2 | 1*3 = 3 2 | 7^2 = 49 | 5^2*2 = 50 | 17*3 = 51 3 | 41^2 = 1681 | 29^2*2 = 1682 | 561*3 = 1683 4 | 239^2 = 57121 | 169^2*2 = 57122 | 19041*3 = 57123 5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451 (End)
Links
- Colin Barker, Table of n, a(n) for n = 1..650
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Programs
-
Mathematica
LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* G. C. Greubel, Dec 28 2016 *)
-
PARI
Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20))
Formula
a(n) = (6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n) + (3+2*sqrt(2))*(17+12*sqrt(2))^n) / 12.
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)).
E.g.f.: -1+(1/12)*(6*exp(x)+(3-2*sqrt(2))*exp((17-12*sqrt(2))*x)+(3+2*sqrt(2))*exp((17+12*sqrt(2))*x)). - Stefano Spezia, Sep 08 2019
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2) = A156164. - Andrea Pinos, Oct 07 2022
Comments