A280202 Number of topologies on an n-set X such that for all x in X there is a y in X such that x and y are topologically indistinguishable.
1, 0, 1, 1, 10, 31, 361, 2164, 32663, 313121, 6199024, 86219497, 2225685925, 42396094690, 1414152064833, 35520966967269, 1517860883350266, 48936884016265947, 2659543345912283917, 107827798819822505332, 7409614386025588874195, 371626299919138199117981
Offset: 0
Keywords
Examples
a(4) = 10 because letting X = {a,b,c,d} we have the trivial topology; {{},{b,c},{a,d},X} * 3; and {{},{a,b},X} *6.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 0..37
- Wikipedia, Topological indistinguishability.
Formula
Extensions
a(19)-a(21) from Pontus von Brömssen, Apr 05 2023
Comments