A280192 Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n.
1, 0, 1, 1, 0, 3, 1, 9, 0, 19, 10, 12, 114, 0, 219, 31, 300, 190, 2190, 0, 4231, 361, 1158, 10140, 4380, 63465, 0, 130023, 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859, 32663, 192496, 1930852, 2381624, 27601000, 7281288, 171636052, 0, 431723379
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 0, 3; 1, 9, 0, 19; 10, 12, 114, 0, 219; 31, 300, 190, 2190, 0, 4231; 361, 1158, 10140, 4380, 63465, 0, 130023; 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859; ...
Links
- Alois P. Heinz, Rows n = 0..18, flattened
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
- Wikipedia, Topological indistinguishability.
Programs
-
Mathematica
A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]; lg = Length[A001035]; A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}]; CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* Jean-François Alcover, Jan 01 2020 *)
Formula
E.g.f.: A(exp(x) - 1 - x + y*x) where A(x) is the e.g.f. for A001035.
Sum_{k=0..n} T(n,k)*2^k = A006905(n). - Geoffrey Critzer, Apr 18 2023
Comments