A280194 Expansion of 1/(1 - Sum_{k>=1} mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).
1, 1, 2, 4, 7, 14, 27, 52, 100, 192, 370, 712, 1370, 2638, 5077, 9772, 18809, 36203, 69682, 134122, 258154, 496887, 956393, 1840836, 3543185, 6819813, 13126568, 25265616, 48630484, 93602468, 180163165, 346772545, 667457180, 1284701149, 2472753448, 4759480146, 9160901700, 17632623181, 33938733369, 65324235138, 125734088242
Offset: 0
Keywords
Examples
a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1]. G.f. = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + 52*x^7 + ... - _Michael Somos_, Jul 13 2023
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Squarefree
- Index entries for sequences related to compositions
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(numtheory[issqrfree](j), a(n-j), 0), j=1..n)) end: seq(a(n), n=0..40); # Alois P. Heinz, Feb 04 2021
-
Mathematica
nmax = 40; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
-
PARI
{a(n) = if(n<0, 0, polcoeff( 1/(1 - sum(k=1, n, x^k*abs(moebius(k)), x*O(x^n))), n, x))}; /* Michael Somos, Jul 13 2023 */
Formula
G.f.: 1/(1 - Sum_{k>=1} mu(k)^2*x^k).
Comments