cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280194 Expansion of 1/(1 - Sum_{k>=1} mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 52, 100, 192, 370, 712, 1370, 2638, 5077, 9772, 18809, 36203, 69682, 134122, 258154, 496887, 956393, 1840836, 3543185, 6819813, 13126568, 25265616, 48630484, 93602468, 180163165, 346772545, 667457180, 1284701149, 2472753448, 4759480146, 9160901700, 17632623181, 33938733369, 65324235138, 125734088242
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into squarefree parts (A005117).
INVERT transform of the absolute value of the Möbius function (A008966). - Alois P. Heinz, Feb 11 2021

Examples

			a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + 52*x^7 + ... - _Michael Somos_, Jul 13 2023
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
         `if`(numtheory[issqrfree](j), a(n-j), 0), j=1..n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff( 1/(1 - sum(k=1, n, x^k*abs(moebius(k)), x*O(x^n))), n, x))}; /* Michael Somos, Jul 13 2023 */

Formula

G.f.: 1/(1 - Sum_{k>=1} mu(k)^2*x^k).