cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A117144 Partitions of n in which each part k occurs at least k times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 9, 10, 12, 15, 16, 19, 21, 25, 28, 32, 34, 41, 46, 51, 55, 64, 70, 79, 86, 97, 106, 119, 129, 146, 159, 175, 190, 214, 232, 256, 277, 306, 334, 367, 394, 434, 472, 515, 556, 607, 654, 714, 770, 836, 901, 978, 1048, 1140, 1226, 1322
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324525. - Gus Wiseman, Mar 09 2019

Examples

			a(9)=5 because we have [3,3,3], [2,2,2,2,1], [2,2,2,1,1,1], [2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(9) = 5 integer partitions:
  1  11  111  22    221    222     2221     2222      333
              1111  11111  2211    22111    22211     22221
                           111111  1111111  221111    222111
                                            11111111  2211111
                                                      111111111
(End)
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^k+x^(k^2))/(1-x^k),k=1..100): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..66);
    # second Maple program:
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1), j=i..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 28 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1], {j, i, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>=i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Mar 09 2019 *)
    nmax = 100; CoefficientList[Series[Product[(1-x^k+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 28 2024 *)

Formula

G.f.: Product_{k>=1} (1-x^k+x^(k^2))/(1-x^k).

A369520 Expansion of Product_{k>=1} 1/((1 - x^(k^2))*(1 - x^k)).

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 34, 52, 80, 119, 175, 251, 359, 504, 702, 965, 1320, 1785, 2401, 3200, 4245, 5589, 7324, 9535, 12364, 15944, 20478, 26175, 33338, 42279, 53438, 67283, 84454, 105642, 131764, 163826, 203149, 251185, 309799, 381079, 467666, 572520, 699342, 852314
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2024

Keywords

Comments

Convolution of A001156 and A000041.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into squares and P(n-k) is a partition of n-k.

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3) + 3^(1/4)*zeta(3/2)*n^(1/4)/2^(3/4) - 3*zeta(3/2)^2/(32*Pi)) / (2^(13/4) * 3^(3/4) * sqrt(Pi) * n^(5/4)).

A369570 Expansion of Product_{k>=1} (1 + x^(k^2)) * (1 + x^k).

Original entry on oeis.org

1, 2, 2, 3, 5, 7, 9, 12, 15, 20, 27, 33, 41, 52, 65, 80, 99, 120, 145, 177, 213, 255, 305, 363, 430, 511, 604, 709, 833, 976, 1141, 1331, 1547, 1793, 2079, 2406, 2775, 3197, 3676, 4221, 4841, 5541, 6330, 7225, 8235, 9372, 10655, 12094, 13710, 15529, 17568, 19848
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A033461 and A000009.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct squares and P(n-k) is a partition of n-k into distinct parts.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))*(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 3^(1/4) * (sqrt(2) - 1) * zeta(3/2) * n^(1/4)/2 - 3*(3 - 2*sqrt(2)) * zeta(3/2)^2/(32*Pi)) / (2^(5/2) * 3^(1/4) * n^(3/4)).

A280278 G.f.: Product_{k>=1} (1 + x^(k^3)) / (1 - x^k).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 26, 38, 54, 75, 103, 141, 190, 254, 337, 444, 580, 754, 973, 1250, 1597, 2030, 2568, 3237, 4061, 5076, 6322, 7847, 9705, 11968, 14711, 18033, 22043, 26873, 32677, 39642, 47972, 57924, 69787, 83904, 100667, 120547, 144072, 171876, 204677
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A279329 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3) + (2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (2^(1/6) * 3^(5/6) * Pi^(1/3))) / (4*sqrt(6)*n).

A280224 G.f.: Product_{k>=1} (1 + 2*x^(k^2)) / (1-x^k).

Original entry on oeis.org

1, 3, 4, 7, 13, 23, 33, 51, 74, 110, 158, 222, 307, 429, 587, 792, 1065, 1423, 1877, 2470, 3227, 4196, 5416, 6963, 8899, 11344, 14384, 18158, 22840, 28647, 35786, 44552, 55295, 68423, 84422, 103879, 127457, 156009, 190481, 232007, 281934, 341879, 413640
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 29 2016

Keywords

Comments

Convolution of A279360 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+2*x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt((2*n)/3) + 3^(1/4)*c*n^(1/4)/ 2^(3/4) - 3*c^2/(32*Pi)) / (12*n), where c = -PolyLog(3/2, -2).

A280225 G.f.: Product_{k>=1} (1 + 3*x^(k^2)) / (1-x^k).

Original entry on oeis.org

1, 4, 5, 9, 17, 34, 47, 75, 109, 165, 240, 341, 473, 671, 936, 1268, 1722, 2325, 3091, 4099, 5403, 7083, 9207, 11923, 15339, 19682, 25134, 31909, 40378, 50954, 64068, 80171, 100089, 124506, 154465, 191043, 235636, 289816, 355673, 435285, 531486, 647478
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 29 2016

Keywords

Comments

Convolution of A279368 and A000041.
In general, if m >= 0 and g.f. = Product_{k>=1} (1 + m*x^(k^2)) / (1-x^k), then a(n) ~ exp(Pi*sqrt((2*n)/3) + 3^(1/4)*c*n^(1/4)/ 2^(3/4) - 3*c^2/(32*Pi)) / (4*sqrt(3)*sqrt(m+1)*n), where c = -PolyLog(3/2, -m).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+3*x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt((2*n)/3) + 3^(1/4)*c*n^(1/4)/ 2^(3/4) - 3*c^2/(32*Pi)) / (8*sqrt(3)*n), where c = -PolyLog(3/2, -3).

A280421 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^k).

Original entry on oeis.org

1, 2, 3, 6, 10, 15, 24, 36, 52, 76, 109, 152, 211, 290, 393, 530, 709, 938, 1236, 1618, 2102, 2720, 3500, 4477, 5707, 7242, 9146, 11511, 14435, 18030, 22451, 27868, 34476, 42531, 52324, 64186, 78541, 95867, 116721, 141791, 171862, 207844, 250846, 302134
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2017

Keywords

Comments

Convolution of A024940 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^(k*(k+1)/2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/3)*Pi + 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2^(3/4) + 3*(2*sqrt(2)-3) * Zeta(3/2)^2 / (32*Pi)) / (8*sqrt(3)*n).

A369573 Expansion of Product_{k>=1} (1 + x^(k^2)) / (1 - x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 14, 17, 18, 18, 20, 23, 24, 24, 26, 31, 34, 35, 38, 43, 46, 47, 50, 55, 59, 61, 66, 73, 77, 79, 84, 92, 97, 100, 106, 115, 121, 124, 130, 140, 148, 152, 161, 174, 183, 188, 197, 210, 220, 226, 235, 251, 264, 272
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A033461 and A003108.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct squares and P(n-k) is a partition of n-k into cubes.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))/(1-x^(k^3)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]
Showing 1-8 of 8 results.