cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291693 Expansion of Product_{k>=1} (1 + x^q(k)), where q(k) = [x^k] Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 13, 16, 19, 22, 26, 30, 34, 38, 44, 49, 54, 62, 67, 74, 83, 89, 98, 107, 115, 124, 134, 145, 155, 168, 178, 189, 206, 217, 231, 247, 259, 277, 294, 310, 327, 345, 365, 382, 404, 424, 444, 470, 489, 513, 539, 561, 588, 613, 641, 670, 699, 729, 756, 791, 824
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

Number of partitions of n into distinct terms of A000009, where 2 different parts of 1 and 2 different parts of 2 are available (1a, 1b, 2a, 2b, 3a, 4a, 5a, 6a, ...).

Examples

			a(3) = 5 because we have [3a], [2a, 1a], [2a, 1b], [2b, 1a] and [2b, 1b].
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get a(0) .. a(A000009(N))
    P:= mul(1+x^k,k=1..N):
    R:= mul(1+x^coeff(P,x,n)),n=1..N):
    seq(coeff(R,x,n),n=0..coeff(P,x,N)); # Robert Israel, Sep 01 2017
  • Mathematica
    nmax = 61; CoefficientList[Series[Product[1 + x^PartitionsQ[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000009(k)).

A320844 Expansion of Product_{k>0} (1-x^p(k)), where p(k) is the number of partitions of k (A000041).

Original entry on oeis.org

1, -1, -1, 0, 1, 0, 0, 0, 1, 0, -1, -1, 1, 1, -1, -2, 2, 2, -1, -2, 0, 1, -1, 0, 1, 2, 0, -2, -2, 2, -1, 0, 1, 2, -1, -1, 0, 2, -3, -2, 1, 3, -1, 0, 1, 3, -3, -4, 0, 4, 1, -3, 1, 2, -1, -4, -1, 5, 2, -4, 0, 3, 1, -3, -1, 0, 1, -3, 1, 3, 3, -2, -2, -2, 1, -1, 1, 1, 3, -3
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2018

Keywords

Crossrefs

Convolution inverse of A007279.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1-x^NumberOfPartitions(k): k in [1..100]]))); // G. C. Greubel, Oct 27 2018
  • Mathematica
    CoefficientList[Series[Product[1 - x^PartitionsP[k], {k, 1, 120}], {x, 0, 100}], x] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    x='x+O('x^50); Vec(prod(k=1,50, 1-x^numbpart(k))) \\ G. C. Greubel, Oct 27 2018
    

A360093 a(n) is the smallest positive integer which can be represented as the sum of distinct partition numbers in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 3, 8, 15, 18, 23, 30, 33, 38, 43, 45, 48, 56, 58, 63, 71, 74, -1, 78, 80, 85, 90, 93, 100, 101, 106, 104, 109, 113, 115, 119, 122, 130, -1, 134, 135, 145, 141, 150, 153, 146, 149, 163, 156, 158, 165, 167, 173, -1, 176, 178, 182, 181, -1, 183, 186, 196, 193, 191, 199
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2023

Keywords

Examples

			a(5) = 18 because we have [15, 3], [15, 2, 1], [11, 7], [11, 5, 2] and [7, 5, 3, 2, 1].
		

Crossrefs

Showing 1-3 of 3 results.