cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280320 Sum of the squares of the smaller parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 5, 10, 14, 34, 66, 59, 75, 84, 220, 205, 309, 373, 600, 565, 665, 839, 1103, 959, 1191, 1176, 1860, 1416, 2060, 1664, 3653, 2194, 3505, 2891, 4974, 3563, 5534, 4371, 7551, 5845, 8874, 6742, 10409, 7061, 10145, 8037, 12414, 9030, 13327, 10849, 15319, 13473, 15960
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280320:=n->add(i^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280320(n), n=1..100);
  • Mathematica
    Table[Total[Select[IntegerPartitions[2 n,{2}],AllTrue[#,SquareFreeQ]&][[All,2]]^2],{n,50}] (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    a(n) = sum(i=1, n, i^2*issquarefree(i)*issquarefree(2*n-i)); \\ Michel Marcus, May 16 2019

Formula

a(n) = Sum_{i=1..n} i^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280322(n).

A280322 Sum of the squares of the larger parts of the partitions of 2n into two squarefree parts.

Original entry on oeis.org

1, 13, 34, 110, 74, 306, 339, 811, 804, 1340, 1437, 2469, 1725, 2840, 2245, 4953, 4511, 8663, 5975, 11191, 8568, 15588, 9696, 18380, 11064, 20397, 17314, 23105, 22379, 31134, 25387, 35486, 27603, 48487, 36645, 65610, 44926, 66801, 45749, 77825, 49037, 93390, 59942
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A280322:=n->add((2*n-i)^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280322(n), n=1..100);

Formula

a(n) = Sum_{i=1..n} (2n-i)^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280320(n).
Showing 1-2 of 2 results.