A058009 a(n) is obtained by applying the map k -> prime(k) n times, starting at n.
2, 5, 31, 277, 5381, 87803, 2269733, 50728129, 1559861749, 64988430769, 2428095424619, 119543903707171, 5519908106212193, 248761474969923757
Offset: 1
Examples
a(3) is 31 because the third prime is 5, the fifth prime is 11 and for the 3rd iteration, the eleventh prime is 31. To get a(4): 4 -> 7 -> 17 -> 59 -> 277.
Links
- Piotr Miska and János T. Tóth, On interesting subsequences of the sequence of primes, arXiv:1908.10421 [math.NT], 2019. See DiagP.
- Błażej Żmija, A note on primes with prime indices, arXiv:1909.12139 [math.NT], 2019.
Crossrefs
For composites, see A280327. - Matthew Campbell, Jan 01 2017
Programs
-
Maple
a:= n-> (ithprime@@n)(n): seq(a(n), n=1..8); # Alois P. Heinz, Jun 21 2019
-
Mathematica
Table[ Nest[ Prime, n, n ], {n, 1, 11} ]
-
PARI
a(n) = my(k = n); for (j=1, n, k = prime(k);); k; \\ Michel Marcus, Jan 01 2017
-
Python
from sympy import prime def A058009(n): k = n for _ in range(n): k = prime(k) return k # Chai Wah Wu, Apr 06 2021
Extensions
Edited by N. J. A. Sloane, Oct 30 2008 at the suggestion of R. J. Mathar
a(12)-a(13) from Donovan Johnson, Feb 17 2011
a(14) from Giovanni Resta, Sep 29 2019
a(13) corrected by Daniel Suteu, Jun 20 2021