cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280352 Expansion of Sum_{k>=1} (x/(1 - x))^(k*(k+1)/2).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 43, 85, 164, 308, 573, 1079, 2081, 4097, 8129, 16049, 31315, 60402, 115806, 222416, 430791, 843987, 1670054, 3322167, 6606936, 13078586, 25714238, 50230292, 97708338, 189921842, 370216757, 725680489, 1431888173, 2842060970, 5662371069
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 01 2017

Keywords

Comments

Number of compositions of n into a triangular number of parts.

Examples

			a(5) = 7 because we have:
  [1]  [5]
  [2]  [3, 1, 1]
  [3]  [1, 3, 1]
  [4]  [1, 1, 3]
  [5]  [2, 2, 1]
  [6]  [2, 1, 2]
  [7]  [1, 2, 2]
		

Crossrefs

Programs

  • Mathematica
    nmax = 36; Rest[CoefficientList[Series[Sum[(x/(1 - x))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 40; Rest[CoefficientList[Series[-1 + EllipticTheta[2, 0, Sqrt[x/(1-x)]]/(2*(x/(1-x))^(1/8)), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 01 2017 *)
  • PARI
    a(n) = sum(k=1, (sqrtint(8*n+1)-1)\2, binomial(n-1, k*(k+1)/2-1)) \\ Andrew Howroyd, Jan 14 2023

Formula

G.f.: Sum_{k>=1} (x/(1-x))^(k*(k+1)/2).
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} binomial(n-1, k*(k+1)/2-1). - Jerzy R Borysowicz, Dec 26 2022
Conjecture: a(n+1)/a(n) ~ 2. - Jerzy R Borysowicz, Jan 14 2023
Conjecture: abs(b(n)-1) < 0.015, where b(n) = a(n)*sqrt(n)/2^(n-1), for n > 781; b(n) does not have a limit. - Jerzy R Borysowicz, Feb 17 2023