A280355 Numbers that are divisible by the sum of their digits and for which the sum of digits equals the product of digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 132, 312, 4112, 11133, 11313, 11331, 13113, 13131, 13311, 22112, 31113, 31131, 31311, 33111, 111216, 111612, 112116, 116112, 121116, 161112, 211116, 611112, 1111712, 11111232, 11112132, 11112312, 11113212, 11118112, 11121132, 11121312, 11123112, 11131212, 11132112
Offset: 1
Examples
132 is in the sequence because 1 + 3 + 2 = 1*3*2 = 6 and 6 divides 132.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Harshad Numbers
Programs
-
Mathematica
Select[Range[11300000], Divisible[#1, (Plus @@ IntegerDigits[#1])] && (Plus @@ IntegerDigits[#1]) == (Times @@ IntegerDigits[#1]) &] nQ[n_]:=With[{idn=IntegerDigits[n]},Mod[n,Total[idn]]==0&&Total[idn]==Times@@idn]; Select[Range[112*10^5],nQ] (* Harvey P. Dale, Nov 02 2024 *)
-
PARI
isok(n) = (d=digits(n)) && ((n % vecsum(d)) == 0) && (vecsum(d) == prod(k=1, #d, d[k])); \\ Michel Marcus, Jan 02 2017